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Abstract.  Geological sequestration has been identified as having potential to reduce increasing 
atmospheric concentrations of carbon dioxide (CO2).   However, a global impact will only be 
achieved if this technology is implemented on a massive scale.  This work presents a methodology 
for finding optimal operational schemes for potential sequestration sites having uncertain physical 
parameters.  This tool uses a semi-analytical algorithm to estimate leakage rather than a calibrated 
numerical model enabling application to potential sites having vastly different domain 
characteristics.  A genetic algorithm is used to heuristically determine non-dominated solutions 
between the following competing objectives: 1) minimize project cost, 2) minimize risk, and 3) 
maximize mass of CO2 sequestered.  Parallel processing and archiving are employed to reduce 
computational cost.  This framework has been developed into an application (COSMOS: CO2 
sequestration simulation and multi-objective optimization software) to visually display domain 
characteristics, pressure pulse and CO2 plume propagation during simulation, and pareto-optimal 
tradeoff solutions. Due to the large set of assumptions made by the semi-analytical CO2 leakage 
algorithm, this framework may only be used for initial site planning and characterization.  Once 
full developed, this tool has the potential for initial screening and ranking of large sets of potential 
geological sequestration sites. 
 
1. Introduction 

A stochastic optimization framework has been created to aid in preliminary project 
planning for geological sequestration (GS) of carbon dioxide.  Mass of CO2 sequestered is 
maximized while project cost and risk are minimized by selecting optimal injection well 
locations and injection rates for potential injection sites having parameter uncertainty.  
This framework has been compiled into a computational tool (COSMOS: CO2 
Sequestration Simulation and Multi-objective Optimization Software) to display output 
results. 

Planning operations such as site selection, optimization, and sensitivity analysis require 
large numbers of model simulations for multiple potential injections site domains making 
calibrated numerical modeling infeasible.  Therefore a fast, though less accurate, semi-
analytical (SA) model will be used to estimate CO2 flux throughout the domain.  After 
‘coarse scale’ project planning has been completed using this stochastic optimization 
framework, more rigorous, although slower, numerical models should be used for final 
project development of individual potential injection sites. 
 
2. Stochastic Optimization Framework 

The general procedure followed by this algorithm is presented below in Figure 1.  Once 
all input files are read, an initial population of injection scenarios is randomly generated.  
Each injection scenario is represented by a chromosome (i.e. a vector of numbers) with 
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length equal to double the number of injection wells.  The first half of the chromosome 
represents each injection well’s injection location index while the second half represents 
injection rate. 
 

 
Figure 1.  Schematic of the stochastic optimization algorithm 

 
Objective values are calculated for each population member.  Mass sequestered is 

simply total mass of CO2 injected and is calculated by multiplying the sum of injection 
well flow rates by the injection duration. 
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In Equation (1), 𝑤 is the injection well index, 𝑛𝐼𝑊𝑠 is the number of injection wells, 
𝑄!!  is the CO2  injection rate for well w, and 𝑡!"# is the injection duration .  The project cost 
(𝐶𝑜𝑠𝑡), consisting of the capital (𝐶𝑎𝑝!), operational (𝑂𝑃!), surface maintenance (𝑆𝑢𝑟𝑀!), 
subsurface maintenance (𝑆𝑢𝑏𝑀!), variable (𝑉!), and leakage (𝐿𝐶) costs, is defined as 
  

𝐶𝑜𝑠𝑡 = 𝐶𝑎𝑝! + 𝑂𝑃! +   𝑆𝑢𝑟𝑀! + 𝑆𝑢𝑏𝑀! + 𝑉!(𝑀𝑠𝑒𝑞!)
!"#$

!!!

+ 𝐿𝐶 (2) 

  
The cost associated with leakage (𝐿𝐶) is estimated as 
 

𝐿𝐶 = 𝑐! ∙𝑀𝑙𝑒𝑎𝑘!! (3) 
 
where 𝑐! is the coefficient representing penalty cost ($), 𝑀𝑙𝑒𝑎𝑘 is the mass of CO2 
leakage, and 𝑟! is a risk adversity factor reflecting preferences of the decision maker. 

Project costs at each risk probability are calculated.  The following list of input 
variables may be represented as stochastic with this framework: 
 
• Aquifer thicknesses for each layer 
• Aquitard thicknesses for each layer 
• Aquifer porosity for each layer 
• Radial aquifer permeabilities for each layer 
• Vertical aquifer permeabilities for each layer 
• Total effective compressibility for each layer 
• Aquifer specific storage for each layer 
• The bottom depth of the lowest aquifer from the surface 
• Leaky well radii for each horizontal location in each aquitard 
• Leaky well permeabilities for each horizontal location in each aquitard 
 

Each uncertain parameter will be assigned a discrete probability distribution function 
(PDF) index.  This index represents a user defined PDF.  As an example, data may suggest 
that the permeability of a given leaky well is represented by the PDF shown in Figure 2. 
For this well, the permeability has a 5% chance of being 0.1 mD, a 20% chance of being 
1.0 mD, a 50% chance of being 10 mD, a 20% chance of being 100 mD, and a 5% chance 
of being 1000 mD.   
 

 
Figure 2.  Graphical example of a 

deterministic PDF 

 
Figure 3.  Uncertain variable selection 

criteria 
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A random number between 0 and 1 will be generated for each uncertain parameter in 

each Monte Carlo (MC) simulation. This number will determine the value of the uncertain 
parameter used in the simulation.  In the example above, if a random number of 0.10 was 
generated for the leaky well in Figure 3 the algorithm would assign a permeability value of 
1 mD.  Once values are assigned to all stochastic variables, the simulation runs as normal 
and outputs a leakage mass.  In this method, each Monte Carlo simulation has an equal 
probability of occurrence.  Figures 4 and 5 show examples of stochastic input data.   
 

 
Figure 4.  Input data defining a set of discrete PDFs 

 

 
Figure 5.  Input data assigning PDF indexes to uncertain variables 

 
Leakage mass is then calculated for each Monte Carlo simulation using a semi-

analytical multi-phase flow model.  Cumulative distribution functions (CDFs) are 
compiled and used to define risk for each injection scenario.  Injection scenarios are ranked 
based upon expected value of project cost. 

A new population of injection scenarios is then created using rankings of current 
population members.   First, an operation referred to as elitism is performed.  A percentage 
of the best injection scenarios is selected to participate in the next generation. Next, a 
selection process is used to choose parents for the next generation.  Population members 
with higher ranking are more likely to be chosen as parents.  Once parents have been 
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selected, crossover, a method of taking some of the traits of each parent, is used to finish 
creating the new generation of injection schemes.  Finally, there is a small chance, 
quantified as the mutation rate, in which chromosome elements of this new population will 
be randomly altered. 

This process is repeated until the convergence criterion is met.  Injection schemes 
providing the best combinations of expected project cost and sequestered mass are selected 
as optimal injection scenario. Risk values are calculated using each optimal injection 
scenario’s cumulative distribution function of leakage. 
 
3. CO2 Leakage Estimation 

This framework will ultimately be used to optimize and compare large quantities of 
potential injection sites having vastly different domain characteristics.  For this reason, 
leakage of CO2 is estimated using a semi-analytical algorithm as opposed to numerical 
response surface technics.  Creating and calibrating each potential injection site’s 
numerical model, as well as training the resulting response surface requires user expertise 
and large investments of computational time.  The semi-analytical leakage algorithm is 
very general and is able to be applied to simplified computational models of the vast 
majority of potential injection sites. 

A semi-analytical algorithm, developed by Celia et al. (2011) and Nordbotten et al. 
(2009), estimates both brine and CO2 flux through permeable caprock locations caused by 
GS.  Originally conceptualized as segments of abandoned wells, permeable caprock 
locations represent cylindrical portions of the aquitard layers having permeability values 
greater than or equal to zero.  Referred to as ‘leaky wells’, these are the only pathways for 
fluid flux between aquifer layers.  Users of this algorithm are able to specify the number 
and spatial location of injection wells (M), leaky wells (N), and aquifer/aquitard layers (L). 
 

 
Figure 6.  Subsurface domain layout 

 
The domain is structured as a horizontal stack of aquifer/aquitard layers perforated by 

injection and leaky wells.  Injection wells are able to inject CO2 into any layer.  There are 
several assumptions made by this algorithm: 
 

1. Aquifers are initially saturated with brine at hydrostatic pressure. 
2. Aquifers are horizontally level, homogenous, and isotropic. 
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3. Aquitards are impermeable, except where there is a leaky well. 
4. Aquifers typically exhibit horizontal flow. 
5. Capillary pressure is negligible resulting sharp fluid interface. 
6. CO2 plume thickness at any given location is assumed to be the maximum plume 

thickness from any given source or sink in the aquifer. 
7. Pressure response from sources and sinks are superimposed in each aquifer. 

 
Initially, fluid is not flowing through any of the leaky wells because the entire domain 

is assumed to be saturated with brine at hydrostatic pressure.  At the start of fluid injection 
the pressure throughout the domain begins to change resulting in fluid flux through leaky 
well locations in the aquitards.	  
	  
4. Visual Simulation and Optimization 

CO2 sequestration simulation and multi-objective optimization software (COSMOS) 
has been created to provide visualization of output data.  Domain characteristics such as 
plan views of leaky will locations with map overlays and profile views of subsurface layer 
profiles (both seen in Figure 6) are displayed as well as simulation data regarding CO2 
plume and pressure propagation and injection well information (Figure 7).  
  
 

 
Figure 6.  Plan view showing injection and leaky well locations superimposed over a map of an example 

potential injection well location 
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Figure 7.  Plan view showing fluid pressure in the bottom aquifer after a period of injection 

 
COSMOS also returns the optimal trade-off surface (Figure 8) between three 

competing objectives; maximize mass of CO2 sequestered, minimize risk, and minimize 
project cost.  Two dimensional tradeoff curves (Figure 9) may be displayed for specific 
objective values. 
 

 
Figure 8.  Example of an optimal tradeoff surface between three competing objects for a potential injection 

site 
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Figure 9.  Example of an optimal tradeoff curve between Project Cost ($) and Mass Sequestered when 

setting Risk to 50% 
 
5. Computational Efficiency 

Due to the iterative nature of genetic search and Monte Carlo processes, large numbers 
of simulations are needed for stochastic optimization.  This framework utilizes parallel 
computing and simulation archiving to improve computational efficiency. 
 
Parallel Computing 
As described above, CO2 leakage must be estimated for multiple injection scenarios for 
each generation. Leakage estimation calculations for a given generation are independent 
and therefore may be processed in parallel (i.e. simultaneously) rather than sequentially.  
Users of this framework are able to specify the maximum number of parallel leakage 
estimations occurring at one time. 
 
Simulation Archiving 
Simulation archiving prevents the GA from recalculating objective values for identical 
scenarios.  A record is kept of GA input data and objective values for each simulation 
processed.  
 
6. Conclusions and Future Application 

The methodology of a general stochastic optimization framework has been presented.  
A semi-analytical algorithm is used to estimate quantities of CO2 leakage.   

The next phase of this research involves testing and improvement of the framework.  
First, stochastic optimization will be performed for a hypothetical project at the Michigan 
Technological University (MTU) test site near Thompsonville, MI.  This site is a nearly 
depleted oil reservoir with a great wealth of data, making it attractive for computational 
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testing.  In addition, an option to use a gravitational search algorithm (GSA) rather than a 
GA will be created.  Performance measures such as convergence rate, computational 
efficiency, and final objective values of the GSA will be compared to those of the GA. 

Due to the large set of assumptions made by the semi-analytical CO2 leakage 
algorithm, this framework may only be used for initial site planning and characterization.  
However, once full developed, this tool has potential for initial carbon sequestration 
project planning and performing initial screening and ranking of large sets of potential 
carbon sequestration sites. 
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