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Abstract. For several decades, optimization and sensitivity/uncertainty analysis of environmental 
models has been the subject of extensive research. Although much progress has been made and 
sophisticated methods developed, the growing complexity of environmental models to represent 
real-world systems makes it increasingly difficult to fully comprehend model behavior, sensitivities 
and uncertainties. This presentation provides an overview of the Model Optimization, Uncertainty, 
and SEnsitivity Analysis (MOUSE) software application, an open-source, Java-based toolbox of 
visual and numerical analysis components for the evaluation of environmental models. MOUSE is 
based on the OPTAS model calibration system developed for the Jena Adaptable Modeling System 
(JAMS) framework, is model-independent, and helps the modeler understand underlying 
hypotheses and assumptions regarding model structure, identify and select behavioral model 
parameterizations, and evaluate model performance and uncertainties. MOUSE offers well-
established local and global sensitivity analysis methods, single- and multi-objective optimization 
algorithms, and uses GLUE methodology to quantify model uncertainty. MOUSE has a robust GUI 
that: 1) allows the modeler to constrain objective functions for specific time periods or events (e.g., 
runoff peaks, low flow periods, or hydrograph recession periods); and 2) permits graphical 
visualization of the methods described above in addition to access and visualization of numerous 
tools contained in the Monte Carlo Analysis Toolbox (MCAT) including dotty plots, identifiability 
plots, and Dynamic Identifiability Analysis (DYNIA). Following a brief system overview, we 
present a basic application of MOUSE to the HyMod conceptual hydrologic model. 

1.  Introduction 
A consequence of environmental model complexity is that the task of understanding 

how environmental models work and identifying their sensitivities/uncertainties, etc. 
becomes progressively difficult. Comprehensive numerical and visual evaluation tools 
have been developed such as Monte Carlo Analysis Toolbox (MCAT, Wagener and Kollat 
2007) and OPTAS (Fischer et al. 2012) to help analyze environmental model input (state, 
parameter) and output spaces. In general, these tools function as diagnostic aids that can 
help quantify the identifiability of an environmental model, i.e., the task of identifying a 
single parameter or a group of parameter sets within a specific model structure as robust 
(or behavioral) representations of the system under analysis. Assessing environmental 
model identifiability is important if the model will be used to predict future behavior, i.e., 
parameter sets should be identified that reflect “realistic” model prediction of changes to 
(and impacts on) the physical system. While MCAT and OPTAS are useful for exploring 
model performance, sensitivity/uncertainty, and underlying assumptions regarding model 
structure, they both rely on additional software platforms to run [i.e., MCAT requires the 
MATLAB programming environment and OPTAS is only available as part of the Jena 
Adaptable Modelling System (JAMS) framework]. Therefore, the primary goal of this 
research study was to convert the tools found in MCAT and OPTAS to open-source, Java-
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based visual and numerical analysis components and integrate them within a fully 
standalone toolbox. This paper provides an overview of the Model Optimization, 
Uncertainty, and SEnsitivity Analysis (MOUSE) software application, In addition to an 
overview of MOUSE, a basic application of MOUSE to the HyMod model is presented to 
further demonstrate the integrated model behavior, optimization, and 
sensitivity/uncertainty analysis tools.  
2.  Mouse Toolbox Overview 

The MOUSE toolbox is directly based on the OPTAS model calibration system 
(housed within the JAMS environmental modeling framework) which in turn contains the 
MATLAB analysis and visualization functions found in MCAT converted into discrete 
Java components. MOUSE is model-independent and is a standalone software application, 
i.e., no additional 3rd party software programs are required to operate the toolbox. MOUSE 
can be used to analyze the results from Monte-Carlo parameter sampling experiments or 
from various single- and multiple-objective model optimization methods. A number of 
techniques are included in the toolbox to investigate the structure, sensitivity, and 
parameter and output uncertainty of environmental models. 
 

 
Figure 1.  MOUSE Model Editor screen. 

 
The MOUSE main screen featuring the Model Editor window is shown in Figure 1. 

The Model Editor controls the general model setup including the workspace location, 
location of the input and output files, and run command information that specifies the 
location of the model executable file and required arguments. Figure 2 shows the 
Configuration screen which controls the selection of Monte Carlo sampling and single- and 
multi-objective optimization techniques, selection of the objective functions (23 objective 
functions are currently available including Nash-Sutcliffe model efficiency, Index of 
Agreement d, Root Mean Square Error, Mean Absolute Error, Relative Absolute Error, and 
Average Volume  
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Figure 2. Configuration screen showing the Monte Carlo sampling and optimization methods available in 
MOUSE. 
 
Error), definition of model input and output parameters (including the exact location of the 
parameters in the input and output files), the location of the observed data file(s), and the 
simulation start/end dates. Available Monte Carlo sampling techniques include Halton 
Sequence, Latin Hypercube, Multi-Point Random, Random, and Sobol’ Sequence (Figure 
2). Single- and multi-objective optimization techniques currently available in MOUSE 
include Branch and Bound, DREAM, MOCOM, NSGA-II, Nelder-Mead, and Shuffled 
Complex Evolution (SCE) (Figure 2). The full suite of available MOUSE tools is shown in 
Figure 3 and major MOUSE Java classes related to MCAT toolbox implementation are 
shown in Figure 4. 
 

 
Figure 3.  MOUSE basic analysis, sensitivity analysis, and uncertainty analysis tools. 

 
MOUSE offers well-established local and global sensitivity analysis methods including 

FAST, Sobol’, and Morris Screening. Most SA methods require an uncorrelated, uniformly 
distributed, and representative sampling of the parameter space, which is easily generated 
by drawing as many samples from a uniform probability distribution as needed. 
Unfortunately, each method demands distinct sampling properties (e.g., information about 
partial derivatives) so that a sampling often cannot be reused. Therefore, large 
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computational effort has to be spent to perform this task multiple times. To overcome this 
limitation, a single quasi-random sampling is used in MOUSE to generate a meta-model 
based on an Artificial Neural Network (ANN) which imitates the original model. To setup 
the meta-model, a multi-step procedure is carried out that first generates an initial sampling 
(e.g., Halton Sequence), uses the sampling to train the ANN in such a way that it imitates 
the model response, and then uses a K-fold cross-validation to estimate the agreement 
between the real model and the meta-model. In case the test fails (i.e., the agreement is not 
acceptable) additional samples are generated and the procedure is repeated. Otherwise, the 
information content of the sampling is deemed sufficient to reproduce the characteristics of 
the original model. The meta-model is now able to dynamically generate samplings with 
arbitrary properties. The flow chart in Figure 5 summarizes this process. In MOUSE, an 
ANN consisting of an input layer, one hidden layer, and an output layer, is used. The input 
layer contains n+1 neurons, which equals the number of input factors plus an additional 
node to model a constant bias. The hidden layer consists of 0.5(n+1) neurons and the 
output layer has one neuron. The activation function of the hidden layer is a sigmoid 
function and that of the output layer is a linear function. Prior to the training process, a 
linear transformation normalizes the training set. The application uses the Encog Java and 
.NET Artificial Intelligence Framework (Heaton Research 2014) and the Resilient 
Propagation learning rule (Riedmiller and Braun 1993). 

 

 

Figure 4. Major MOUSE Java classes related to MCAT toolbox implementation. 
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Figure 5. Flowchart of the sampling and ANN training process. 

 
3. Mouse Example Application using the HyMod Model 
3.1 HyMod model description 

The lumped conceptual hydrologic model HyMod (Boyle et al. 2000; Wagener et al. 
2001) is composed of a snow module, soil-moisture accounting module, and a routing 
module (Figure 6). HyMod uses a simple degree-day method (Bergström 1975) for 
calculating snowmelt. When the average air temperature for a day falls below the 
temperature threshold for snow (Tt), snow storage occurs. When the average daily air 
temperature is above the temperature threshold for snowmelt (Tb), snowmelt occurs at the 
rate defined by the degree-day factor (DDF). The storage elements of the catchment are 
distributed according to a probability density function defined by the maximum soil 
moisture storage, and the distribution of soil moisture stores. The maximum soil moisture 
storage (Cmax) represents the capacity of the largest soil moisture store, while the shape 
parameter (β) describes the degree of spatial variability of the stores (Wagener et al. 2004). 
Evaporation from the soil moisture store occurs at the rate of the potential evaporation 
estimated using the Hamon approach. Following evaporation, the remaining rainfall and 
snowmelt are used to fill the soil moisture stores. Excess rainfall is divided in the routing 
module using a split parameter (α) and then routed through parallel conceptual linear 
reservoirs meant to simulate the quick and slow flow response of the system. The flow 
from each streamflow is the addition of the outputs from each of these reservoirs. There 
are a total of eight parameters that must be calibrated for HyMod as shown in Figure 6 and 
Table 1. 
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Figure 6. Schematic of the HyMod conceptual hydrologic model including calibration parameter definitions 
(after Kollat et al. 2012). 
 
Table 1. Lower and upper sampling bounds used in MOUSE for the HyMod input parameters. 
 

Parameter 
name (unit) Parameter description Lower 

bound 
Upper 
bound 

Ks (day-1) Slow flow routing tank rate parameter 0.0 0.15 
Kq (day-1) Quick flow routing tank rate parameter 0.15 1 
DDF(mm ºC-
day-1) Degree-day factor 0 20 

Tb (ºC) Base temperature to calculate snowmelt -3.0 3.0 
Tt (ºC) Temperature threshold -3.0 3.0 
α (unitless) Quick/slow flow split parameter 0 1 
β (unitless) Scaled distribution function shape parameter 0 7 

Huz (mm) Maximum height of the soil moisture accounting tank 
(used with β to calculate Cmax). 

0 2000 

3.2 HyMod input data and MOUSE setup 
The HyMod model was run under MOUSE using streamflow data for the Guadalupe 

River Basin in Texas, USA taken from the Model Parameter Estimation Experiment 
(MOPEX) dataset (Duan et al. 2006). For many of the MOPEX watersheds, the available 
data range was from 1 January 1948 to 31 December 2003 with occasional gaps. For this 
example application, we analyze the period 1 October 1961 to 30 September 1972, i.e., 10 
years plus a 1-yr warm-up period to remove the effects of initial conditions. The 10-yr 
period was selected because it contains uninterrupted daily data for the Guadalupe River 
Basin. Table 1 shows the lower and upper sampling bounds used in MOUSE for the 
HyMod input parameters as shown in Figure 6.  
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3.3 MOUSE evaluation 
3.3.1 Dotty plots. Dotty plots map model parameter values and their corresponding 
objective function values to 1-D points and provide a means of assessing the identifiability 
of model parameters. Dotty plots of the Root Mean Square Error (RMSE) (streamflow) 
objective values versus HyMod α and β parameter values resulting from 1000 uniform 
random samples of the parameter space are shown in Figure 7. In MOUSE, the user is 
provided with a combo box capable of changing the objective function threshold which is 
displayed on the dotty plots to aid in providing a visualization which best displays the 
identifiability of each parameter. In Figure 7, note that in general a range of α and β values 
result in very similar RMSE objective function values indicating low identifiability in 
terms of this objective. However, there are two areas for α (between 0.25 and 0.40) and β 
(between 5.75 and 6.75) where the values are more densely clustered together indicating 
higher identifiability. 
 

 

 
 

Figure 7. Dotty plots of RMSE vs. HyMod α and β parameter values resulting from 1000 uniform random 
samples of the parameter space. 
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3.3.2 Identifiability plots. Identifiability plots (Figure 8) provide another means of 
visualizing the identifiability of HyMod α and β model parameters by plotting the 
cumulative distribution of the top 10% of the parameter population in terms of RMSE 
objective function values for streamflow. High gradients in the cumulative distribution 
indicate high identifiability in the top performing model parameters whereas shallower 
gradients indicate low identifiability. In addition to the cumulative distribution function, 
the top 10% of the parameter population is divided into user-selected bins of equal size and 
the gradient of the cumulative distribution is then calculated for each group. These 
gradients are plotted as bars on the identifiability plots with shading indicative of gradient. 
This provides additional visualization functionality as the height and shade of the bars 
indicate identifiability within the range of each group. In Figure 8, it can be seen that α has 
the highest identifiability within the range of 0.28-0.40 and β has the highest identifiability 
within the range of 6.5-7.5. 

 

 
Figure 8. Identifiability plots of RMSE vs. HyMod α and β parameter values resulting from 1000 uniform 
random samples of the parameter space. 
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3.3.3 Dynamic Identifiability Analysis (DYNIA). Wagener et al. (2003) introduced the 
Dynamic Identifiability Analysis (DYNIA) approach which consists of an algorithm based 
on ideas presented by Beck (2005) and extends components of the GLUE algorithm 
(Beven and Binley 1992). DYNIA can be used to find informative regions with respect to 
model parameters, to test model structures (assuming that varying parameter optima 
indicate structural problems), and to analyze experimental design (Wagener and Kollat 
2007). It uses the identifiability measure shown in Figure 8 and applies it in a dynamic 
fashion using a Monte Carlo based smoothing algorithm. The user must choose a window 
size to calculate a moving mean of model performance (using the mean absolute error 
criterion). A different identifiability plot is therefore produced for every time step and a 
gray color scheme is used to show the variation in the marginal posterior distributions for 
each parameter. The window size has to be selected with respect to the function of the 
parameter (temporal length of the region of influence) and the quality of the data (better 
data allows the use of a smaller window). In Figure 9, the darker gray regions indicate 
peaks in the distributions, the red line is the 90% confidence limit, and the black 
continuous line is the observed streamflow hydrograph. The DYNIA algorithm utilizes the 
top 10% of all data sets to calculate the distribution at every time step. Figure 9 shows that 
the information content of the data with respect to the β parameter is highest at values 
above 6.25. This range is similar to those found for β in the dotty plot (5.75-6.75) and 
identifiability plot (6.5-7.5) analyses. 
 

 
Figure 9. DYNIA plot for the HyMod β parameter with a 10-day window period. 

 
3.3.4 Sensitivity analysis.  A sensitivity analysis (SA) was carried out for seven HyMod 
model parameters (Cmax was calculated using the Huz and β parameters) so that the effect 
of the parameters on the Nash-Sutcliffe efficiency between the simulated and observed 
streamflow could be assessed. The ANN was able to accurately imitate the HyMod model 
as a Nash-Sutcliffe efficiency of more than 0.99 between the original model and the meta-
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model (see “Quality of Regression” in Figure 10) was achieved. This estimation is based 
on a ten-fold cross-validation. The Regional Sensitivity Analysis (RSA), FAST, and 
Morris methods provide sensitivity indices (linearly normalized to make them comparable) 
which can be used to create a priority ranking of the input parameters. The resulting 
rankings of the three SA methods are not equal; however, the same parameters (α, β, and 
Kq) are classified as sensitive for all three methods (the Morris method shows the Huz 
parameter as also being sensitive). 
 

 

Figure 10. RSA, FAST, and Morris method sensitivity analysis results for HyMod input parameters. 
 

3.3.5 Multi-objective analysis.  The multi-objective analysis plot is useful for visualizing 
trade-offs between different objective functions which often provide conflicting 
optimization targets (typically a solution that is best in terms of all objective functions 
cannot be identified). As a result, a Pareto optimal set of solutions can be identified which 
are non-dominated with respect to one another (i.e., improved performance in one 
objective results in decreased performance in one or more of the remaining objectives). 
Figure 11 shows multi-objective tradeoffs across different objective functions for HyMod 
model streamflow evaluation using spider plot (also known as radar plot) visualization. 
The plot is a diagram in the form of a web that is used to indicate the relative influence of 
different parameters, or in this case objective functions. Spider plots are effective 
visualization tools when there are more than three factors that can influence a result. The 
factors that have most influence are mainly located on the periphery of the web and the 
factors that have little influence are located at the center of the web. 
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Figure 11. Multi-objective tradeoffs across different objective functions for HyMod model streamflow 
evaluation using spider plot visualization. 

4. Summary and Conclusions 
This paper provides an overview of the MOUSE software program, an open-source, 

Java-based toolbox of visual and numerical analysis components for the evaluation of 
environmental models. MOUSE is based on the OPTAS model calibration system 
developed for the Jena Adaptable Modeling System framework, is model-independent and 
helps the modeler understand underlying hypotheses and assumptions regarding model 
structure, identify and select behavioral model parameterizations, and evaluate model 
performance and uncertainties. The MOUSE toolbox was designed to be applied to 
evaluate models in a research context in hydrological and environmental studies. MOUSE 
offers well-established local and global sensitivity analysis methods, single- and multi-
objective optimization algorithms, and uses GLUE methodology to quantify model 
uncertainty. Its simplicity of use and the ease with which model results can be visualized 
make it an effective tool as illustrated herein with the HyMod application. Further 
evaluation algorithms/methods are currently being integrated into the MOUSE toolbox to 
increase its flexibility in analyzing environmental models. 
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