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Abstract. Analytical solutions of differential equations describe physical problems and 
provide general insight of the studied natural mechanisms. Although they may be not 
suitable to solve complex hydrological problems, they are fast and useful to test 
numerical procedures. The solutions proposed in this work are obtained for arbitrary flux 
boundary conditions and arbitrary soil moisture initial conditions. This permits to use 
standard meteorological data: precipitation data (incoming flux) and Bowen ratio data 
(outgoing flux), which are very common, while soil volumetric water content 
measurements are usually not available exactly at the soil-atmosphere interface. A first 
class of solutions is obtained with a uniform initial condition for the soil moisture and a 
time dependent surface flux, which well represents experimental precipitation/ 
evaporation cases. A solution with a more general boundary condition is derived using a 
sum of simple solutions obtained for constant boundary conditions. Finally the same 
technique is applied to the soil moisture initial condition too. The vertical profiles of the 
soil water content computed by this simple sum of solutions are compared with the 
results of the aforementioned analytical solutions. 
 
 
1. Introduction 

It is well recognized that analytical solutions of differential 
equations describing physical problems provide general insights and 
concisely identify the relationships among the variables of the studied 
problems allowing rational approximations and simplifications. 
Therefore, although numerical methods are powerful in solving complex 
non linear problems, analytical solutions conserve their utility and can 
also provide a useful check to numerical procedures. Exact and 
approximated analytical solutions of the non linear differential equation 
governing the water flow in unsaturated soils (Richards equation) have 
been derived by Sanders et al. (1988), Hogarth et al. (1989, 1992), 
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Parlange et al. (1992), Ross and Parlange (1994), Parlange et al. (1997), 
Hogarth and Parlange (2000) among others. Moreover, analytical 
solutions of the linearized Richards equation have been derived in integral 
form by Warrick (1975) and Basha (1999), but their results give closed 
form solutions only for constant flux. Chen et al. (2001) derived analytical 
solutions of the linearized Richards equation for a variety of time 
dependent fluxes, before surface saturation. 

A different approach to obtain analytical solutions of the linearized 
Richards equation was utilized by Menziani et al. (in press) assuming 
arbitrary initial and boundary conditions for the water content. The 
evolution of the last quoted study is here presented. Firstly, a class of 
analytical solutions is obtained assuming a uniform initial condition and a 
known time dependent flux at the surface, which well represents 
experimental precipitation/evaporation cases. Secondly, a new solution is 
obtained for any surface flux boundary condition and any soil water 
content initial condition. This is the result of the sum of simple solutions 
obtained for constant complementary conditions. The vertical profiles of 
the soil water content computed by this simple sum of solutions are 
compared with the results of the aforementioned class of analytical 
solutions. The time behaviour of the incoming flux at the surface 
describes rainfall infiltration or sprinkle irrigation whose intensity are 
lower then the infiltration capacity of the soil. Moreover, precipitation 
measurements are much more common then soil moisture measurements 
so, solutions of the flow equation, obtained assuming a time dependent 
surface flux boundary condition, can be very useful in situations of 
interest in hydrology. 
 
2. Theory 

Consider the linearized Richards equation satisfied by the soil 
water content θ ranging from 0 to 1: 
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where D is the hydraulic diffusivity and θ∂∂= kK ; they are assumed 
constant. k is the soil hydraulic conductivity.  
On the basis of the work described in Menziani et al. (in press), the space 
and time evolution of the soil water content is given by the sum of two 
solutions: ),(),(),( 21 tztztz θθθ +=  where: 
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The solution ),(1 tzθ  derives from the initial condition of the problem and 
a null boundary condition, while the solution ),(2 tzθ  derives from the 
boundary condition of the problem and an initial condition equal to zero. 
In particular, if 0)( =ziθ  the solution ),( tzθ coincides with ),(2 tzθ .  
Let us assume now, again the initial condition for θ, but the boundary 

condition for the flux defined as: θθ K
z

D +
∂
∂

−=Φ . Taking into account 

the linearity of the flux relationship and of the differential equation (1), 
the following equation (4), with Φ instead of θ as unknown, can be 
written:  
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Therefore, given the conditions: 
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for the flux the following solution ),(),(),( 21 tztztz Φ+Φ=Φ  is 
obtained, where: 
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Finally, with simple considerations and remembering that 

0),(lim =⋅⋅−

∞→
tze DzK

z
θ , the unknown function θ is obtained: 
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A priori equation (7) gives the distribution of θ(z,t) for any Φ0(t) and θi(z) 
but the integrals in equations (6) and (7) may be difficult, or impossible, 
to be solved analytically. 
 
3. Solution with exponential flux at the surface 
 Since rain gauge data are widely collected it follows that, during 
precipitation events, the incoming water flux trend is known in many 
places while this is not the case of the soil volumetric content. During the 
last years, strong flood events happened both in meteorologically well-
predicted situations and also in unpredicted local summer storms (always 
more frequently). In any case the floods are strongly related to the state of 
the soil moisture (Obled and Djerboua, 2000).  
Looking at recent precipitation events it can be seen that many isolated 
local summer cases can be described with a surface flux represented with 
the sum of few exponential functions. Fig. 1 shows four examples 
corresponding to a flux given by: 1) a simple exponential function (curve 
1); 2) the sum of two exponentials with null precipitation at t=0 (curve 2); 
3) the sum of two exponentials with precipitation not null at t=0 (curve 3); 
4) the sum of three exponentials (curve 4) corresponding to a null 
precipitation at t=0 and with a null derivative at t=0. The integral (from 
zero to infinity) of all the four curves gives a total precipitation of 50 mm. 
The parameters of the four quoted functions are reported in table 1.  
 
 
 
 
 
 
 
 
 
 
 

Fig
 
 

 
 
 
 
 
 
 
 
 
 

ure 1. Water Flux at the surface (Examples of Boundary Conditions) 
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N q1 
(mm s-1) 

β1 
(s-1) 

q2 
(mm s-1) 

β2 
(s-1) 

q3 
(mm s-1) 

β3 
(s-1) 

1 0.04 8 10-4 0 0 0 0 
2 0.08 8 10-4 0.08 1.6 10-3 0 0 
3 0.08 8 10-4 0.07 1.4 10-3 0 0 
4 0.02 2 10-3 0.05 1.0 10-3 0.03 3.3 10-4

 

Table 1. Parameters of the four functions reported in figure 1. 
 

 
The solution of (4) assuming a null uniform initial condition for the soil 
water content (θi(z)=0) and a flux boundary condition given by: 
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2 βγ . Clearly equation (8) is valid only if 

( )DK ⋅≤ 42β . If ( )DK ⋅> 42β  the solution of (4) is more complicate 
and involves the error function of complex argument (Abramowitz and 
Stegun, 1965). 
Due to linearity of (4), using a boundary condition which is the sum of 
two or three exponential functions, the solution is given by the sum of two 
or three solutions like (8). 
Fig. 3 shows (solid lines) the trend of the vertical profile of the soil 
volumetric water content θ obtained assuming a uniform initial condition 
(θi(z)=0) and  as boundary condition. In this 
theoretical example, five vertical profiles of the soil volumetric water 
content can be seen. The thin vertical solid line is the initial condition 
while the other solid curves are obtained with a constant time step. The 
water content profile trend shows the time increase of the soil moisture as 
the water enters the soil. The last two curves show an inflection point 
moving downwards while this is not evident in the first two. The circles 
describe the solution obtained using the approximating function presented 
in the following paragraph. 

tt eqeqt ⋅−⋅− ⋅−⋅=Φ 21
210 )( ββ

 
4. Solution with step functions approximating the flux at the surface 
 Not always the experimental surface flux can be represented by a 
simple function. In such a case, may be very difficult or even impossible 
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to solve the integral in equations (6) and (7).  Vice versa, the solution of 
equation (4) is simple for the following complementary conditions: 
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(where q0 is a constant); that is a uniform (zero) initial condition for the 
soil volumetric water content and a constant flux at the surface. From 
equations (6= and (7) the solution of equation (4) results:  
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Ierfc is the iterated complementary error function. 
Approximating any arbitrary boundary condition with a sum of step 
functions the solution of the problem is given by the sum of expressions 
similar to equation (10). In fact, assuming a uniform initial condition 

0)( =ziθ  (i.e. ) and a boundary condition as sketched in Fig. 2 
the solution, in the time interval (t

0)( =Φ zi

M-1 – tM), results:  
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M is the number of discontinuities (at t1, t2, ...... tM ....) where the 
boundary condition assumes the values: q1, q2, ...... qM ..... (besides q0). 
 
 
 
 
 
 
 
 
 
 

Figure 2. Step functions used to approximate the surface water flux. 
 

 
In Fig. 2 a constant flux q1 lasts from t0 to t1, a constant flux q2 lasts from 
t1 and t2 and so on. In equation (11) the difference (qj – qj-1) represents the 
height of the step function starting at tj-1 (clearly q0=0). 
 
 

153  



Menziani et al. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Soil volumetric water content profiles obtained using equation 
(8) (solid lines) and the approximated profiles from equation (11). 

 

In Fig. 3 the solid lines are the results obtained from equation (8), 
according to the description previously done; they are compared with the 
approximated solution (11) (circles). The soil moisture results agree 
satisfactory even though a raw time resolution was used to approximate 
the incoming flux. In real experimental cases this technique can be used to 
choose a proper rain gauge acquisition time. 
 
5. Solution with step functions approximating the initial condition 
 In the previous paragraph the boundary condition (i.e. the flux at 
the air-soil interface) was approximated by a sum of step functions. In a 
similar way, here, an arbitrary initial condition is approximated by: 
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N is the total number of discontinuities (at z1, z2, ...... zN) where the initial 
condition assumes the values: θ1, θ2, ...... θN (besides θ0). H(x) is the 
Heaviside function with argument x (Jones, 1966). 
Now, assuming a null flux as boundary condition, the solution of equation 
(4) says that the soil volumetric water content is given by the sum of 
(N+1) solutions: 
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where, from equation (6) and (7), one obtains:  
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and, in a similar way, but with some more difficulties, one obtaines: 
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Generally, approximating any arbitrary boundary and initial condition 
with a series of step functions the solution of the Richards equation is 
given by the sum of equations (11) and (13). 
 
6. Conclusion 
 In this work the linearized Richards equation with a boundary 
condition on the flux and a soil water content initial condition has been 
solved in integral form. 
 A class of closed form analytical solutions has been derived for a 
flux boundary condition, which is the sum of exponential functions. On 
the other hand, many real precipitation events may be represented as the 
sum of few exponential functions. 
 A more general solution is obtained approximating the flux 
boundary condition by the sum of step functions and with a null uniform 
soil water content initial condition. For this solution the mathematical 
constrain discussed in paragraph (3) doesn’t exist. 
 Finally, a solution is obtained for a null flux at the surface and an 
initial condition approximated by the sum of step functions. The 
expression obtained adding the last two solutions permits to solve the 
linearized Richard equation for any arbitrary boundary and initial 
condition. 
 The expression obtained from the described procedure is not 
exactly an analytical solution but it can be very useful to solve 
hydrological problems. In particular the procedure allows using 
experimental rain gauge data, which are very common. In fact, these data 
may be assumed as the incoming water flux at the atmosphere-soil 
interface if the precipitation rate doesn’t exceed the soil infiltrability.   
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