
Hydrology Days 

Basin-Scale Stream-Aquifer Modeling of the Lower 
Arkansas River, Colorado 
 
 
Enrique Triana1 
Graduate Research Assistant and PhD candidate, Civil Engineering Department, Colorado 
State University, Fort Collins 
 
John W. Labadie2 
Professor, Civil Engineering Department, Colorado State University, Fort Collins 
 
Timothy K. Gates3 
Professor, Civil Engineering Department, Colorado State University, Fort Collins 

 
 
 
 
Abstract.  A methodology is presented for modeling stream-aquifer interactions at the river 
basin scale that integrates an artificial neural network (ANN), a geographical information 
system (GIS), and the MODSIM generalized river basin network flow model.  The 
methodology allows development of dynamic, spatially dependent relationships between 
measurable aquifer stresses and river return flow; as well as providing a linkage of spatial 
system features and characteristics to the river basin network flow model.  GIS provides the 
framework for managing and preprocessing the extensive spatial-temporal database required 
for the modeling components. Visual BasicTM (MS VB.NET) programs are used to process 
information and link data with the ANN and MODSIM.  MATLABTM (MathWorks, Inc) is 
applied to training, validation and analysis of the ANN in estimating aquifer-stream 
relationships from a calibrated regional-scale finite difference groundwater model.  Complex 
stream-aquifer interactions are embodied in the trained ANN, which is embedded in 
MODSIM for providing accurate return flow calculations in river basin management and 
water rights analysis.  The methodology is applied to the Lower Arkansas River Basin in 
Colorado as a case study to demonstrate its potential for accurately representing stream-
aquifer interactions and analyzing system characteristics that allow construction of robust and 
realistic river basin-scale management models. Future development of the tool will provide 
conservative constituent modeling of salinity as a foundation for assessing and evaluating 
strategies to support productive irrigated agriculture and to enhance the agroecosystem. 
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1 Introduction 

Integrated river basin management is a growing concern for planners, 
managers and regulators where management of water systems is viewed as a 
part of the broader natural and socio-economic environment.  Effective tools 
are needed for helping answer questions regarding allocation of scarce 
resources among competing human activities and for making better decisions 
for development and sustainable use of water and land resources.  Effective 
river basin management requires not only natural river system modeling, but 
also consideration of the legal-administrative framework and institutional and 
socio-economic aspects.  The methodology presented herein is a prototype of 
a spatially distributed river basin scale tool designed to integrate crucial 
stream-aquifer modeling components into a river basin management model for 
effective decision support. 

2 Approach 

Stream-aquifer interaction is one of the most difficult components to 
address in river basin conjunctive use modeling.  Simplified, lumped stream-
aquifer response models are generally incorporated into river basin models, 
but fail to adequately capture the complex dynamic and spatial characteristics 
of the system response (Fredericks et al. 1998).  Triana et al. (2003) proposed 
a methodology to represent the spatially distributed stream-aquifer response 
characteristics over a region within a river basin using an extensively trained 
artificial neural network (ANN) and a well-calibrated finite difference 
numerical groundwater model.  The trained ANN captures the complex 
nonlinear spatially distributed stream-aquifer response relationships as 
embodied in the training data set.  In addition, embedding ANN within a river 
basin decision tool eliminates the computational burden of directly 
incorporating realistic finite difference models.  In this study, the 
methodology of Triana et al. (2003) is modified to produce an ANN that 
predicts the stream-aquifer interaction for the Lower Arkansas River Basin in 
Colorado based on basin scale measurable system characteristics and stresses.  
An extensive geo-database is used to store the available spatial-temporal 
information.  A geographic information system (GIS) is used for efficient 
processing of the enormous quantities of spatial/temporal data required for 
this analysis.   

The conjunctive use basin scale model is constructed using the generalized 
river basin network flow model MODSIM (Fredericks et al. 1995).  MODSIM 
provides the water quantity modeling with powerful tools to include 
institutional/administrative aspects.  The trained ANN essentially models 
stream-aquifer interactions and is embedded in the MODSIM solver using 
VB.NET scripts to dynamically incorporate stream-aquifer interactions and 
return-flow calculations during execution of MODSIM.   
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3 Basin Scale Artificial Neural Network Development 

Artificial neural networks are "massively parallel interconnected networks of 
simple elements and their hierarchical organizations which are intended to 
interact with the objects of the real world in the same way as biological 
nervous systems do", or simply a "system of interconnected computational 
units" (Kirby 1993). 

3.1 Spatial-Temporal Database 
Complex stream-aquifer relationships are highly dependent on numerous 

explanatory variables in time and space, requiring development of an 
extensive spatial-temporal database.  The spatial database (Figure 1) consists 
of hydrographic information for the study area such as river and stream 
channels, lakes, canals, digital elevation model (DEM), soil types, land use 
maps and irrigated fields map. The temporal database consists of measured 
time series of flow rates at stream gauging stations, pumping wells, and 
diversion structures, as well as reservoir storage volumes.  Spatial-temporal 
information is collected from output generated by the GMS Groundwater 
Modeling System (Boss International, Inc. and Brigham Young University) 
based on MODFLOW runs that relate factors affecting recharge and pumping 
events to river depletion or accretion.  The geographical location of cells in 
the finite difference groundwater model grid provides a means of associating 
modeled aquifer-stream processes with the database (Figure 2). NEXRAD 
also provides spatial-temporal precipitation data. 

Digital Elevation Model 

Figure 1 - Spatial database sample 

3.2 Explanatory Variables 
A key component in the ANN training for basin scale application is the 

selection of the explanatory variables.  The challenge is to select variables that 
capture physical and spatial features that affect the aquifer-stream interaction 
and at the same time are measurable or can be estimated at the basin scale.  
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Groundwater
Model grid
Groundwater
Model grid

Figure 2 - Spatial-temporal database 

The role of the explanatory variables is providing information concerning 
known system states to use in predicting stream returns or depletions.   The 
spatial distribution of the explanatory variables is embedded in the ANN by 
grouping them in buffer-areas within the alluvial valley, defined relative to 
their distance from stream segments.  The temporal variability for each buffer-
area is aggregated into the weekly time steps used in the groundwater model.  
Figure 3 illustrates an example of the buffer-area distribution around a river 
segment.  The current selected explanatory variables per buffer-area are:  

• Diverted irrigation water:  Calculated as the canal total water diverted 
per unit irrigated area, multiplied times the irrigated area in each buffer-
area.  

• Pumped water:  Calculated as the total weekly volume pumped by wells 
in each buffer-area. 

• Average land surface slope: Calculated over the buffer-area using the 
DEM. 

• Canal length:  Total length of irrigation canals within the area-buffer. 
• Precipitation: Calculated as weekly average precipitation over the buffer-

area from NEXRAD. 

3.3 Artificial Neural Network Training 
Gates et al. (2002) applied GMS to a portion of the Lower Arkansas River 

basin in Colorado. The initially developed steady-state model has been further 
calibrated as a transient model over a 133 week period using an extensive 
field data collection effort, which makes it a unique tool to accurately 
represent stream-aquifer interaction in the modeled region. 

The main river channel in the study region is divided into segments.  The 
most significant stresses that explain stream-aquifer interaction within a 
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River sectionRiver section
 

Figure 3 - Basin characteristics grouped by buffer-areas 

particular segment are assumed to occur in the adjacent surface drainage area.  
Figure 4 shows the distribution of the segments and their area-buffers across 
the Lower Arkansas River basin. 

Using the areas that at least partially intersect the modeled region, input-
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output relationships are extracted for the ANN training.  The training data set 
for each stream segment consists of the explanatory variables for each buffer-
area within the segment and the modeled subsurface return/depletion flows 
aggregated for each river segment as calculated using the further extended 
Gates et al. (2002) model.   

The available data sets are separated into three separate groups for 
training, validation, and testing.  The validation data sets are used to prevent 
overtraining during the training stage.  After training, weekly return flow 
volumes per unit length of stream [(m3/week)/m] are predicted with a 
coefficient of determination (r2) of 0.81 when predicting combined training 
and validation input data.  Testing data sets are used to measure the trained 
ANN prediction capability using new inputs.  Figure 5 shows predicted vs. 
GMS model-calculated 
return/depletion values 
during the ANN testing 
phase.  Statistical 
analysis reveals a 
performance with a 
coefficient of 
determination of the 
same order of 
magnitude as the 
training/validation 
stage, which provides 
confidence in the 
predictive capabilities 
of the ANN in the same 
areas where it is 
trained.  The average 
residual error from the 
testing prediction is 1.6 
[(m3/week)/m], with a 
standard deviation of 
19.9[(m3/week)/m]. 

Figure 5 - ANN testing with new input data sets 

3.4 ANN Application Outside Training Areas 
Using relationships captured by the ANN within the modeled area, the tool 

is applied for predicting stream-aquifer interactions in the vicinity of the 
modeled region. Even though the ANN inputs are normalized, one of the 
greatest difficulties is that inputs from outside areas can have different ranges 
of input values depending on the size and shape of the watershed.  Attempting 
to visualize errors in the trained ANN predictions outside of the training area 
involves reserving a portion of the modeled stream segments for the testing 
stage.   

Experimentation shows that predictions are less accurate when using the 
tool for areas of different sizes and shapes.  Even though the results give low 
coefficients of determination, the predictions provide acceptable return flow 
values and trends.  An example of the predictions outside of the training area 
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is illustrated in Figure 6.  The results provide confidence that the proposed 
tool will be able to reasonably predict return/recharge flows in a basin scale 
model.  The prediction residual errors outside the training area show a mean 
of -11.5 [(m3/week)/m], with a standard deviation of 15.3[(m3/week)/m].  On-
going research will describe uncertainty derived from prediction errors.  

Figure 6 - ANN return flow prediction outside of the training areas 

4 Conjunctive Use Basin Scale Model 

The spatial/temporal database is used to construct the hydro-network, 
which contains interconnected nodes representing reservoirs, system water 
demands, monitoring points, diversion points, and collections of surface 
drainage points and points of aggregation of groundwater return flows.  Many 
monitoring points in the network have measured data associated with them.  
Figure 7 shows the hydro-network with geo-referenced features. The geo-
referenced hydro-network provides the basis for the MODSIM network, with 
Figure 8 displaying a MODSIM schematic representation of the same portion 
of the system detailed in Figure 7. 

Groundwater Return Points

ReservoirsMonitoring Points

System 
Water
Demands

Water
Diversion 
Point

Groundwater Return Points

ReservoirsMonitoring Points

System 
Water
Demands

Water
Diversion 
Point

Figure 7 – GIS Hydro-Network 
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Figure 8 – Example of MODSIM system representation. 
4.1 Calibration Phase 
During the calibration phase, the goal is to simulate the system as closely 

as possible to the historical operation.  The MODSIM graphical user interface 
(Figure 8) allows construction of the river basin network structure, and 
specification of physical characteristics, water right decree amounts and dates, 
and import of all available measured sources of water.   
4.1.1 Hydrologic Calibration 

The study region is divided into reaches or segments between gauging 
stations for easier analysis.  The calibration allows identification of 
unmeasured water gained and lost for each reach using measured flow in the 
river and major tributaries and diversion records.  It can also reveal system 
characteristics, additional features, and special operations.  The previously 
trained ANN is embedded in the MODSIM solver using a VB.NET routine for 
predicting the stream-aquifer interaction in interaction with the MODSIM 
solution for flow allocation.  Maximum possible runoff for each sub-
watershed as the total volume of rain in the sub-watershed is estimated using 
NEXRAD spatial hourly precipitation data.  The MODSIM network topology 
allows addition of these runoff estimates as unregulated inflow at each sub-
watershed outlet node. 

In general, preliminary results showed significant unmeasured amounts of 
water being returned to the river in addition to the predicted groundwater 
return.  The measured runoff from tributaries and the calculated return flow 
(as the difference between the flows at the gauging stations minus the 
diversion records) show the same trend (Figure 9).  However, there was not an 
observable strong correspondence between them, suggesting that it will be 
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necessary to better quantify unmeasured runoff from rainfall.  The return flow 
volume calculation for the reach between stations ARKROCCO and 
07123000 in the Arkansas River using only the measured tributaries’ 
contributions is shown in Figure 9.    

Analysis of these reaches will allow identification of special system 
operations and potential inaccuracies in the field data.  For example, the large 
negative peaks in Figure 9 could indicate missing data in the historical 
diversion records or large-scale pumping in the vicinity of the river, among 
other possibilities.   

Figure 9 -  Observed and predicted water return volumes 

5 Conclusions and Future Work 

Results indicate that ANN is a valuable tool for predicting stream-aquifer 
interactions in the modeled region using relationships extracted from input 
variables available basin-wide.  Application of the trained ANN in the vicinity 
of the groundwater modeled region show low correspondence between ANN-
predicted and GMS-calculated return/depleted flows; however, the predictions 
have an acceptable order of magnitude and trends.  Future work will attempt 
to improve the ANN prediction outside of the modeled region by redefining 
the way that the spatial explanatory variables are grouped, and making them 
more even in size and shape; using more than one modeled region to train the 
ANN (application to a region of the valley between Lamar and the Colorado-
Kansas border is currently underway); extending the current modeled period 
to increase the training/testing datasets and to cover a wider variety of climatic 
conditions; and adding other explanatory variables (for example, depth to bed 
rock of the shallow aquifer, and aquifer transmissivity). 

The tool presented herein shows that it is possible to embed ANNs in the 
MODSIM solver to build an alternative solution for modeling conjunctive 
water use at basin scale.  The solution bases its ability to predict 
return/depleted flows on capturing the aquifer-stream relationships from a 
well-calibrated finite difference model, and using these relationships to predict 
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interactions in non-modeled areas.  This approach addresses problems faced in 
basin scale modeling such as a large computational burden when using finite 
difference models, and use of simplified lumped response functions dealing 
with groundwater return flows.  Future work includes better estimation of 
unmeasured surface runoff, development of diversion rules based on climatic 
conditions, and incorporation of more complex system operations and 
conservative constituent quality modeling inside MODSIM (MODSIMQ).  
MODSIMQ will provide the ability of modeling strategies to support a 
productive irrigated agriculture in the basin while complying with state water 
law and interstate compacts.  
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