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Abstract.  In this investigation we tested the performance of five available hierarchi-

cal clustering algorithms and nine distance metrics. An arbitrarily chosen experimen-

tal matrix (6x3) was used in this analysis to evaluate 45 clustering schemes using the 

dendrogram and cophonet coefficient index. Priori knowledge of cluster dispersion 

was the key element to determine non-useful cluster structures. The combination of 

Euclidean metric and Wards method is most preferred to define homogenous clusters 

in hydrological studies; however, the combination of Mahalanobis metric and Aver-

age Linkage method emerged with a higher cophonet index (0.90420). The most effi-

cient grouping was achieved by the use of City Block and Euclidean metrics in all 

combinations while the other distance metrics resulted in a non-interpretable dendro-

gram. Major dendrogram plots and the cophonet index values are presented for visual 

comparison.   

 

1. Introduction 
Unsupervised learning algorithms, such as clustering and nearest neigh-

bour classification, rely on priori definition of distance measures over the in-

put domain (Xing et al., 2002). It is known that selecting a “good” metric 

critically affects the algorithms’ performance. Distance metrics are the essen-

tial tool in different disciplinary applications ranging from multi-dimensional 

scaling and unsupervised learning (clustering) to probabilistic roadmap meth-

ods for local planners, name-matching tasks (Cohen et al. 2003), pattern rec-

ognition and even document browsing for data miners (Schultz and Joachims, 

2004; Aggarwal et al., 2001). Since such measures are formulated for a spe-

cific problem, it might not be accurate for all clustering cases in hydrological 

applications. Therefore we aimed to explore the performance of metric-

clustering algorithm combinations using any priori knowledge for the metrics 

and hierarchical clustering algorithms.  
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Until the 1980s, the discussion concentrated mainly on techniques that en-

compass different clustering algorithms. At the end of the 1980s, the whole 

process of clustering-starting with the selection of distance metrics and 

method then ending with the validation of clusters became dominant (Arabie 

et al., 1996). The performance of many clustering and data mining algorithms 

depend sensitively on their being given a good metric over the input space. 

This problem is particularly acute in unsupervised settings, such as hierarchi-

cal clustering, and is related to the perennial problem of there often being no 

“absolute right” answers for clustering data (Xing et al., 2002). 

In this paper, we are only interested in the performance problem by means 

of cophonet coefficient and interpretable tree plots (dendrogram). The linear 

relations are included into the matrix elements to make them link in the same 

cluster; hence, a visual inspection could be possible at the end of the cluster-

ing scheme in order to easily distinguish the success and failure of 45 metric-

method combinations. The dendrogram structure is a strong evidence of fail-

ures in agglomerative clustering methods, which is often used in hydrological 

applications.  

 

2.  Data  
The experimental matrix (6x3) proposed by Demirel (2004) was used in 

our analysis. An observation number, ranging from 1 to 6, was assigned to 

each entity (hydrometric station). The three columns of variables were chosen 

to set each station pairs in the same cluster so that the control structure will be 

basically 3 distinct clusters at any hierarchy tree: (1, 2), (3, 4) and (5, 6). 

 

3. Methods 
The scheme evaluation method does not require any priori assumptions 

about the metric of the 6x3 clustering sample. The hierarchical clustering uses 

a distance to the nearest neighboring entity. The available nine metrics in Mat-

lab program are given in Table 1 (Url-1). There are five following critical 

steps in the analysis procedure:  

 

(i) the choice of variables,  

(ii) decision on standardization,  

(iii) the choice of similarity metrics,  

(iv) selection of methods, the number of clusters,  

(v) test of stability (validation) in the clustering scheme.  

 

However the distance metric or similarity metric selection affects the cluster 

structure. The major steps in a cluster analysis are outlined by Arabie et al., 

(1996); Everitt, (1993); Url-1, and Hair et al., (1987). 
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Table 1.  Distance metrics (Url-1). 

 

Squared Euclidean distance: 

 

Eq. ( 1 ) 

Euclidean distance:  
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Eq. ( 2 ) 

Mahalanobis distance: 

 

where V is the sample covariance matrix. 

Eq. ( 3 ) 

City Block metric: 

 

Eq. ( 4 ) 

Minkowski metric:  

 

Note that for p = 1, the Minkowski metric becomes the City Block 

metric; and for p = 2, the Minkowski metric is equal to the Euclid-

ean distance. 

Eq. ( 5 ) 

Cosine distance: 

 

Eq. ( 6 ) 

Correlation distance: 

 

where 

          

Eq. ( 7 ) 
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Hamming distance: 

 

Eq. ( 8 ) 

Jaccard distance:  

 

Eq. ( 9 ) 

 

 

4. Results: 
The performance evaluation is carried out for all nine metrics given in Ta-

ble 1. Only the significant tree plots will be presented here to demonstrate 

their clustering performance. It is interesting that, only the City Block (Eq. 4), 

Minkowski (Eq. 5), and both Euclidean metrics (Eqs. 1 and 2) performed well 

with hierarchical clustering method combinations. However Hamming and 

Jaccard measures (Eqs. 8 and 9) failed and resulted in the same tree structure 

except for the Centroid method case (Figures 1 and 2).  
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Figure 1. Hierarchy tree plot for the combination of Hamming distance metric and Single 

Linkage method. 

 

The Mahalanobis distance (Eq. 3) and Wards’ method combination resulted in 

a clear and distinctive tree plot with a high cophonet index of 0.84603, indi-

cating a robust clustering scheme for hydrological studies (Figure 3, Table 2). 
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Figure 2. Hierarchy tree plot for the combination of Jaccard distance metric and Centroid 

method. 
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Figure 3. Hierarchy tree plot for the combination of Mahalanobis distance metric and Wards’ 

method.  

 

Euclidean distance is the most commonly used dissimilarity measure in cluster 

analysis. The literature reviews provided by Gong and Richman (1995) shows 

that the large majority (85%) of investigators applied this metric in their hy-

drology based papers. The results of this study verify this common usage too 

with a well-structured tree plot and a high value of cophonet index as 0.88114 

(Figure 4, Table 2). Cosine metrics (Eq. 6) with Single Linkage (SL) method 
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failed in the visual inspection due to well-known chaining affect of SL 

(Everitt, 1993, Figure 4).  
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Figure 4. Hierarchy tree plot for the combination of Euclidean distance metric and Wards’ 

method. 
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Figure 5. Hierarchy tree plot for the combination of Cosine distance metric and Single Link-

age method combination. 

 

It should be noted that Mahalanobis distance metrics can be used to signifi-

cantly improve clustering performance when using it with Wards’ method. 
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Table 2.  Distance metric and clustering method combinations adapted from Demirel (2004). 

 

Cluster Membership of Observation 
Method Combinations 

Obs1 Obs2 Obs3 Obs4 Obs5 Obs6 

Cophonet  

Coefficient 

Euclidean  and Single Linkage  3 3 1 1 2 2 0.86004 

Euclidean  and Complete Linkage  3 3 1 1 2 2 0.87795 

Euclidean  and Average Linkage  3 3 1 1 2 2 0.88335 

Euclidean  and Centroid  3 3 1 1 2 2 0.88335 

Euclidean  and Ward  3 3 1 1 2 2 0.88114 

Squared Euclidean  and Single Linkage  3 3 1 1 2 2 0.84092 

Squared Euclidean  and Complete Linkage  3 3 1 1 2 2 0.86627 

Squared Euclidean  and Average Linkage  3 3 1 1 2 2 0.87320 

Squared Euclidean  and Centroid  3 3 1 1 2 2 0.87320 

Squared Euclidean  and Ward  3 3 1 1 2 2 0.87074 

Cityblock  and Single Linkage  3 3 1 1 2 2 0.85142 

Cityblock  and Complete Linkage  3 3 1 1 2 2 0.87174 

Cityblock  and Average Linkage  3 3 1 1 2 2 0.87788 

Cityblock  and Centroid  3 3 1 1 2 2 0.87787 

Cityblock  and Ward  3 3 1 1 2 2 0.87554 

Mahalanobis  and Single Linkage  1 1 2 2 3 2 0.86177 

Mahalanobis  and Complete Linkage  1 1 3 3 1 2 0.81073 

Mahalanobis  and Average Linkage  1 1 1 1 3 2 0.90420 

Mahalanobis  and Centroid  1 1 1 1 3 2 0.88764 

Mahalanobis  and Ward  3 3 1 1 2 2 0.84603 

Minkowski  and Single Linkage  3 3 1 1 2 2 0.86004 

Minkowski  and Complete Linkage  3 3 1 1 2 2 0.87795 

Minkowski  and Average Linkage  3 3 1 1 2 2 0.88335 

Minkowski  and Centroid  3 3 1 1 2 2 0.88335 

Minkowski  and Ward  3 3 1 1 2 2 0.88114 

Cosine  and Single Linkage  3 3 1 2 3 2 0.68007 

Cosine  and Complete Linkage  3 3 1 2 3 2 0.68965 

Cosine  and Average Linkage  3 3 1 2 3 2 0.69095 

Cosine  and Centroid  3 3 1 2 3 2 0.69094 

Cosine  and Ward  3 3 1 2 3 2 0.68807 

Correlation  and Single Linkage  1 1 2 3 2 3 0.69398 

Correlation  and Complete Linkage  1 1 2 3 2 3 0.74243 

Correlation  and Average Linkage  1 1 2 3 2 3 0.74406 

Correlation  and Centroid  1 1 2 3 2 3 0.74393 

Correlation  and Ward  1 1 2 3 2 3 0.74352 

Hamming  and Single Linkage  1 1 1 1 2 3 - 

Hamming  and Complete Linkage  1 1 1 1 2 3 - 

Hamming  and Average Linkage  1 1 1 1 2 3 - 

Hamming  and Centroid  1 1 1 1 2 3 - 

Hamming  and Ward  1 1 1 1 2 3 - 

Jaccard  and Single Linkage  1 1 1 1 2 3 - 

Jaccard  and Complete Linkage  1 1 1 1 2 3 - 

Jaccard  and Average Linkage  1 1 1 1 2 3 - 

Jaccard  and Centroid  1 1 1 1 2 3 - 

Jaccard  and Ward  1 1 1 1 2 3 - 
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Nevertheless this distance measure did not perform well with other clustering 

algorithms such as Complete Linkage or Centroid. The cluster membership of 

entities 1, 2, 3 and 4 were defined correctly but the pair 5 and 6 was not 

merged in the same cluster. 

 

4. Conclusions 
In this paper, we presented a performance assessment for different dis-

tance metrics and clustering methods. This was accomplished by solving an 

experimental matrix clustering by 45 scenarios. We evaluated the metrics-

method combinations on a collection of hierarchy tree plots and related 

cophonet index. The diagrams showed that City Block, Minkowski, and both 

Euclidean distance metrics can be successfully used with any hierarchical 

clustering methods. The combination of Mahalanobis metric and Average 

Linkage method emerged with a higher cophonet index value of 0.90420; 

however, this metric performed best in the dendrogram structure with Wards’ 

method. Hence this combination is recommended for hydrology based cluster-

ing studies. Future work is needed both with respect to small matrix and clus-

tering methods. In particular, we do not yet know if the generalization is pos-

sible for large dataset. Furthermore, the power of the assessment would be in-

creased, if it was possible to include more complex metrics exist in the com-

parative clustering problems. 
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