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Abstract. Close to a river the traditional groundwater Dupuit assumption of horizontal flow does 
not hold.  In order to treat the problem accurately one would need to use a 3-dimensional numerical 
model with small cells in the vicinity of the river.  Presented here is an analytic approximate way to 
avoid this extra complication and still describe accurately the exchange flow between the stream 
and the aquifer.  
 
1. Raison d’être for this investigation 

In the vicinity of a river (or canal) reach the Dupuit-Forchheimer (D-F) assumption 
does not hold.  In order to treat the problem accurately one would need to use a 3-
dimensional model with small cells in the vicinity of the reach.  Given the usually small 
horizontal spatial extent of the reach footprint, one may legitimately wonder if there might 
not be an approximate yet adequate way to avoid this extra complication? 
 
2. Previous Work 

To alleviate that difficulty it has been proposed to link a vertical analytical 2-
dimensional solution to the numerical horizontal 2-dimensional model.  A “reach 
transmissivity” is defined so that the exchange discharge Q (volume per unit time) would 
be given by the expression: 
 
      

€ 

Q = ΓΔH   (1)  
 
where ΔH is the head difference between the reach and the aquifer at a finite distance from 
the reach.  Eq. (1) is an integrated form of Darcy’s law over a finite distance which 
accounts for the geometrical character of the flow path.  How is Γ determined?  
It can be done analytically or numerically.  
 
3. Analytical Approach 

Figure 1 shows schematically such a flow path. Clearly in the vicinity of the reach 
bottom the flow is primarily vertical.  Only as a distance xfar is reached does the flow 
become essentially horizontal.  In the 1940’s and 50’s, it was assumed for simplicity, that 
the stream had no width and fully penetrated the aquifer.  With the assumption of full 
penetration no resistance is accounted for the difficulty the flow encounters to change 
direction from a vertical to a horizontal one. The purpose of this investigation is to 
compare the results of an analytical approach for this added resistance “turning” factor 
with those obtained with: (a) the assumption of full penetration and (b) a Finite Difference 
grid.  
 
4. A Finite Difference Dimensionless Conductance 

The simplest grid one can conceive would be one that has one cell below the reach 
horizontal bed and of width the actual wetted perimeter.  Figure 2 displays the 
configuration of that cell with center at point A where head is HA.   Only half the reach 
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cross-section and half the cell is shown. Next to that cell to the right is another cell of 
width 2 Δxfar  with center at point C where the head is HC.   Beyond that cell further to the 
right the D-F assumption applies.  Using Darcy’s law and the principle of continuity the 
conductance is expressed as: 
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Impervious boundary--bottom of aquifer  
Figure 1.  River or canal cross-section 

 
 

The seepage flow from half the reach is then given as: 
 
    

€ 

Q = KLΓFD(H R − HC ) = KLΓFDΔH far                 (3) 
 
where ΔHfar is the head drop between the reach and the cell center located at a distance 
from the reach equal to Δxfar. 

Figure 3 shows a comparison of the Analytical and the Finite Difference 
conductances, both expressed relative to that of Full Penetration.  It is clear that the Finite 
Difference approach greatly underestimates the seepage.  To get better accuracy with this 
approach one would have to have a grid that follows the contour of the cross-section and 
thus use a 3-dimensional model. However this is precisely what one wants to avoid. 
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Figure 2.  Finite Difference grid used to estimate stream-aquifer conductance 

 
5. Practical Use of the Results of the Analytical Approach  

Now how are the results shown in Figure 3 to be used?  Take the ratio ΓAN/ΓFP, 
displayed in Figure 3, and call it Γr the “turning factor”.  It is the factor that needs to 
multiply the full penetration conductance to account for the added turning resistance to 
flow and for the difference in areas through which the flow moves.  This is a function of 
the ratio WP/e and similarly is Δxfar, shown on Figure 4.  
 
The exchange discharge from one side is then defined as: 
 
  

€ 

Q = KLΓrΓFPΔH far   (4) 
 
where ΔHfar  is the horizontal head difference between the canal perimeter and the far 
section at 

€ 

Δx far = (x far − B) . 
 
Consider a simple numerical example.  Take a bottom aquifer thickness eB of 10.0 m, a 
depth of 3.0, thus 

€ 

e  = 11.50, and a wetted perimeter of canal of 12.25 m.  
Then WP/

€ 

e  = 12.25/11.50 = 1.17.  From Figure 3 one obtains 

€ 

ΓFP  = 0.82 and 

€ 

Γr  = 0.67.  
Assume a hydraulic conductivity of 10.0 m/day, and a reach length of 1 km.  Then the 
discharge from one side will be:  
Q = 10x1000x0.67x0.82x

€ 

ΔH far = 5,494x 

€ 

ΔH far  cubic meters/day where 

€ 

ΔH far  is the 
drop of head, also measured in units of meters, over the distance 

€ 

Δx far = (x far − B) = 
1.23x 11.50= 14.1 meters (using Figure 4).  Had one assumed full penetration the 
discharge would have been overestimated as 8,200x

€ 

ΔH far  cubic meters/day.   
 



Morel-Seytoux 

 76 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Wetted perimeter/average aquifer thickness  

Conductances, function of wetted perimeter  

 Full penetration   
 Analytic relative conductance  
 Finite Difference grid relative conductance  

Case: yfar = y0 

Average aquifer thickness is bottom thickness + 1/2 reach depth

 
Figure 3   Comparison of different estimations of stream aquifer conductance. Case: yfar = y0 
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Figure 4  Normalized reach depth and distance to far section; Case: yfar = y0 
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One may rewrite Eq.(4) in the form: 
 

    

€ 

Q = KLΓr{WP / e } e 
[Δx far{WP / e }]

ΔH far      (5) 

where the dependence of the variables on the ratio WP/

€ 

e  has been shown explicitly 
through the braces {.}.  
 
Had we used the Finite Difference estimation the discharge would have been: 
Q = (0.44 /0.67)x5,494x 

€ 

ΔH far = 3,608x

€ 

ΔH far  
 
Application in Numerical Groundwater Modeling 
 With the proposed approach one can still formally assume full penetration provided 
that the discharge going into the cell with center at point C (see Figure 2) be given by 
Eq.(5). 
 Eq.(5) has the inconvenience that its direct application would require that distance 
from reach center to cell center be precisely xfar.  Now typically in large scale groundwater 
models the cells are considerably wider than the reaches.  Let then 

€ 

ΔxRC  be the distance 
between the edge of the reach and the cell center and let 

€ 

ΔH RC = H R − HC  be the head 
drop between them.  Again using Darcy’s law and the principle of continuity one obtains 
for the conductance and the discharge in this case: 
 

    

€ 

Q = KL 1

[1+ ( 1
Γr
−1)

Δx far
ΔxRC

]

 

 
  

 
 
 

 

 
  

 
 
 

( e 
ΔxRC

)ΔH RC   (6) 

 
In most groundwater models to calculate the river seepage the multiplier of the 

head difference would be treated as a constant.  However it is clear from Eq.(6) that it 
would be very easy to account for the change in the reach transmissivity as a result of rise 
or fall of the stage in the reach since the relative conductance is a function of the wetted 
perimeter. 
The great advantage of Eq.(6) is that it is no longer necessary to have a fine grid size in the 
vicinity of the reach to calculate accurately the seepage from the reach.  
 
Case of clogging at the reach bottom 

For simplicity let us define the relative dimensionless conductance in Eq. (6) as: 
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ΓrRC =
1

[1+ ( 1
Γr
−1)

Δx far
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If there is clogging at the reach bottom with a hydraulic conductivity Kc over a thickness ec 
then again simple algebra combined with mass conservation will yield a correction for the 
expression of the discharge: 

   

€ 

Q = LK 1

1+ ( K
Kc
)( ec

W p
)( e 
ΔxRC

)ΓrRC
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ΔxRC
)ΔH RC  (8) 

 
Limitations of the Study   

One limitation, among others, is the fact that the results of Figures 3 and 4 depend 
on the shape of the river cross-section.  Figure 5 shows the shape of the reach cross-section 
for a particular value of the ratio of wetted perimeter over average aquifer thickness.  It is a 
reasonable shape. 
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Figure 5.  Cross section when depth of water is 2.42 units of length and aquifer thickness is 10 
 
Conclusions 

A potentially very practical tool has been suggested for a numerically efficient 
and adequately accurate 2-dimensional alternative to a full detailed 3-dimensional 
modeling.  There is little need for a detailed grid description of the reach cross-section.  In 
fact the full penetration assumption can be used provided that the flow across the reach 
vertical boundary be corrected by the turning factor. What has been quantitatively 
demonstrated is that neither the traditional assumption of full penetration nor the use of a 
typical Finite Difference grid model will provide adequately accurate results.  However it 
must be emphasized that it is not necessary to proceed to a 3-dimensional model to 
improve accuracy but rather correct the manner in which the seepage discharge is 
calculated while conserving a typical Finite Difference grid.  


