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Abstract.  The Standardized Precipitation Index (SPI) is an index widely used for drought 
monitoring purposes. Since its computation requires the preliminary fitting of a probability dis-
tribution to monthly precipitation aggregated at different time scales, the SPI value for a given 
year and a given month will depend on the particular sample of observed precipitation adopted 
for its estimation and in particular on the sample size. Furthermore, the presence of trend in the 
underlying precipitation will affect adversely the estimation of parameters, and therefore the 
computation of SPI. 
Objective of the present paper is to investigate the variability of the SPI with respect to the size 
of the sample used for estimating its parameters, either in the case of stationary or non station-
ary precipitation series. In particular, sampling properties of SPI, such as bias and root mean 
squared error (RMSE), are analytically derived assuming the underlying precipitation series 
without trend and normally distributed. Results related to the normal case can find application 
also in the case of other distributions, namely when sample data can be transformed into normal 
values (i.e. lognormal or cube root normal distributed data).  
Moreover, sampling properties when precipitation is affected by trend are investigated by 
means of Monte Carlo simulation. Results indicate that SPI values are significantly affected by 
the size of the sample adopted for its estimation. In particular, while for the case of underlying 
stationary series, RMSE tends asymptotically to zero as sample size increases as expected, in 
the presence of a linear trend a minimum RMSE value can be determined corresponding to a 
specific sample size. This suggests that an optimal sample size (in RMSE sense) can be deter-
mined, when the underlying series is affected by trend. 
 
1. Introduction 

 
The Standardized Precipitation Index (McKee et al.,1993) is one of the most widely 

applied tool for drought monitoring (Edwards and McKee, 1997; Hayes et al. 1999; 
Lloyd-Hughes and Saunders, 2002; Bonaccorso et al., 2003; Sonmez et al., 2005; 
Vicente-Serrano, 2006; Wu et al., 2007) and, more recently, for drought forecasting as 
well (Bordi et al., 2005; Mishra and Desai, 2005; Moreira et al., 2006; Cancelliere et al., 
2007). Its major strength stems from the possibility to compare drought events in re-
gions and areas with different climates, taking into account the different time scales at 
which the components of the hydrological cycle are affected by precipitation deficits. 

The index is based on an equiprobability transformation of precipitation values ag-
gregated at k-months into standard normal values, with k generally fixed according to 
the purpose of the analysis. In practice, computation of the index requires i) fitting a 
probability distribution to aggregated monthly precipitation series (e.g. k= 3, 6, 12, 24, 
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36 months), ii) computing for each value the non-exceedance probability and iii) deter-
mining the corresponding standard normal quantile, which is the SPI value.  

McKee et al. (1993) assumed aggregated precipitation gamma distributed and esti-
mated parameters using maximum likelihood. Guttman (1998) discussed this assumption 
by analysing precipitation data from 1035 stations in the U.S. and concluded that, at least 
for the U.S. it would be preferable to use the Pearson type III distribution. Also, Lana et 
al. (2001) found that the Poisson-gamma distribution is suitable for modelling precipita-
tion in Catalonia (Spain).  

Regardless of the parametric distribution adopted, as a consequence of the procedure 
of parameter estimation, the SPI values will exhibit sampling variability, namely, the SPI 
for a given year and a given month will depend on the sample size of the observed series 
of precipitation. This implies a potential limitation when comparing index values based 
on sample series of different length. 

Wu et al. (2005) investigated the effect of the length of precipitation record on SPI 
calculation by examining the correlation coefficients, the index of agreement and the 
consistency of dry/wet event categories between SPI values derived from different re-
cord lengths of observed precipitation. Changes of the shape and scale parameters of the 
gamma distribution corresponding to different lengths of record were also investigated. 
They concluded that the longer length of record used in SPI calculation, the more reli-
able the SPI values will be. 

In the present paper the effect of the length of precipitation record on SPI calcula-
tion is investigated by analyzing the influence of the sample size on the sampling prop-
erties of the index, either in the case of stationary or non stationary precipitation series. 
In particular, explicit expressions of Bias and Root Mean Squared Error of SPI are de-
rived under the assumption of aggregated precipitation normally distributed. It is also 
shown that such derived expressions hold true, when precipitation can be assumed nor-
mally distributed after a monotonic transformation is applied (e.g. Box and Cox, 1964), 
as is the case for instance of lognormal distributed data.  

Then, sampling properties of SPI are investigated by means of Monte Carlo simula-
tion in the case when precipitation is affected by trend.  

Results indicate that SPI values are significantly affected by the size of the sample 
adopted for its estimation, both in the case of stationary and non stationary series. In 
particular, for the case of underlying stationary series, while the bias is close to zero re-
gardless of the sample size, RMSE tends asymptotically to zero as sample size in-
creases, as expected. On the other hand, in the presence of a linear trend, bias values di-
verge from zero as both sample size and trend slope increase, while RMSE first de-
creases until a minimum  value is reached corresponding to a specific sample size and 
then increases again. This suggests that an optimal sample size (in RMSE sense) can be 
determined, when the underlying series is affected by trend. 

 
2. The Standardized Precipitation Index 

 
In order to derive the sampling properties of the SPI, it is worth recalling its formal 

definition. With reference to a periodic monthly precipitation series , where 
ν=1,...n is the year and τ=1,...,12 is the month, let’s define the backward aggregated se-
ries of order k as: 
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   (1) 

Assume  , for fixed τ identically distributed according to some cumulative den-

sity function (cdf) . Then, the SPI value  corresponding to a given value of  

 is defined as: 

   (2) 

where  is the inverse of a standard normal cdf  with zero mean and unit 
variance. From such definition it follows that the SPI index is normally distributed with 
zero mean and unit variance. Practical computation of the SPI requires fitting a distribu-
tion to an observed sample  for fixed τ.  

From a theoretical standpoint, the distribution of aggregated precipitation  fol-
lows directly from the distribution of monthly precipitation . For example, if  

is normally distributed, then  will be also normally distributed. However such an 
analytical derivation may not be straightforward in other cases. Despite the theoretical 
possibility to derive analytically the distribution of   from that of , in practice it 

is preferable (and easier) to choose a distribution for  from a parametric family and 
estimate parameters directly from a sample of aggregated values. Following McKee et 
al. (1993), usually the gamma distribution is employed for such a task, although in prin-
ciple, this may not apply to all cases.  

The main sources of uncertainty in the computation of SPI index stems from the 
choice of the parametric probability distribution to fit aggregated monthly precipitation 
series, as well as from the estimation of the unknown parameters. In turn, the latter is 
influenced by the length of the sample adopted for estimating the parameters. The as-
sessment of the relationship between precipitation sample length and corresponding es-
timation error for SPI is the subject of the next paragraphs. 

 
3. Sampling properties of SPI: normal distribution, no-trend case   

 
For the sake of simplicity, the series  will be hereafter denoted by , since we 

are interested in analysing the sampling properties of the SPI for fixed τ and k.  
Let aggregated precipitation , with ν=1, 2,..., n, be an independent and identically 

normally distributed process with mean µ and variance  σ2, i.e.: 

 Y1, Y2,…,Yn N(µ,σ2) (3) 
Let’s assume the mean µ and the variance  σ2 are estimated by the Maximum Like-

lihood Estimation method (MLE), namely: 

  (4) 
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  (5) 

where y1, y2,…,yn is a sample from (3). With reference to a generic observation Y, not 
included in the estimation sample, the corresponding estimated SPI is given by the 
simple equation: 

  (6) 

as descends directly from Eq. (2) when  is normally distributed. The true SPI value Z, 
based on the population mean and standard deviation of the underlying series is: 

  (7) 

 Therefore, the sampling variability of the SPI can be characterized by investigating 
the distribution of the following random variable as a function of the estimation sample 
size n: 

  (8) 

The random variable D is the difference of two random variables: the first is obvi-
ously normally distributed with zero mean and unit variance. To derive the distribution 
of the second r.v. , it has to be observed that for the normal distributed variables, the 
sample mean  and the sample variance S2 are independent (see for example Mood et 
al., 1974), and, in our case Y is independent of both, since it is not included in the esti-
mation sample. Furthermore, for i.i.d. normal distributed random variables the follow-
ing well known results hold (Mood et al., 1974): 

  (9) 

and 

  (10) 

The r.v.  is therefore the ratio of a normal r.v. to the squared root of a χ2 r.v. and 
thus, after an appropriate rescaling, it is distributed as a Student’s t (Mood et al., 1974).  
Indeed, it can be shown that: 

  (11) 

From Eq. (11), it follows that  and . 

Analytical derivation of the distribution of D is not an easy task, since D is the dif-
ference of two dependent r.v., with a standard normal and a Student’s t as marginal dis-
tributions, respectively. Nonetheless, the first two moments of D can provide enough in-
formation to characterize the sampling variability of the SPI, since they allow to com-
pute the bias and the Mean Squared Error (MSE) of estimation, as: 
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  (12) 
and 

  (13) 
In practice it is preferable to use the Root Mean Squared Error (RMSE) of estima-

tion which can be computed by taking the square root of the MSE:   
  (14) 

The bias term  can be computed as: 

  (15) 

since both expectations are zero. Thus, in the normal case, the SPI estimator given by 
Eq. (6) is unbiased.  As a direct consequence, the MSE of estimation coincides with 

.  
On the basis of Eq. (13), the MSE can be rewritten as:   

 (16) 

The first term in the above equation is obviously 1. The second term, as it has been 

shown previously, is equal to .  

The covariance term in Eq. (16) can be rewritten as:  

  (17) 

The second term is obviously zero, since the observation Y is not included in the es-
timation sample, and therefore it is uncorrelated with the sample mean  or the sample 
standard deviation S. 

By means of conditional expectation concepts, the first covariance term in Eq. (17) 
can be rewritten as: 

 

  (18) 

The latter expectation can be computed by reminding that S2 is distributed according to 
a rescaled χ2 distribution (Eq. (10)) and therefore it follows: 

  (19) 

Finally, combining Eqs. (16), (18) and (19), it follows that: 
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  (20) 

thus 

  (21) 

It can be inferred from Eqs. (20) and (21) that, in the normal case, the MSE of esti-
mation of SPI does not depend on the parameters µ and  σ2 of the underlying variable, 
but only on the sample size n.  

Equations (15) and (21) have been verified by means of Monte Carlo simulation. In 
particular, for a fixed sample size n, 50000 series of length n have been generated out of 
a standard normal distribution and, each time, two values of SPI corresponding to a 
normal variable have been estimated: the first, using the mean and variance of the sam-
ple, and the other assuming the population mean and variance, namely 0 and 1 respec-
tively. Then, RMSE has been computed as the average squared difference between the 
two estimates. Note that the choice of the standard normal as parent distribution for the 
Monte Carlo simulation is not limiting since, as shown previously, Bias and RMSE do 
not depend on the mean and standard deviation of the distribution. Thus, using a non-
standard normal distribution would lead to the same results. 

In Figure 1, RMSE given by Eq. (21) and observed RMSE, computed by simulation, 
are plotted versus the sample size n.  

 
Figure 1. Theoretical (Eq. 21) and estimated (from simulation) RMSE of SPI for the normal distribution 

case 
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The plot indicates very good agreement between RMSE computed by Eq. (21) and 
those computed by simulation, thus confirming the validity of the derived analytical ex-
pressions. 

From the plot it can be inferred that the RMSE decreases with the sample size. In 
particular, the RMSE is about 0.24 for sample size 30, while it is 0.15 for sample size 
70.  
 
4. Sampling properties of SPI: other distributions, no-trend cases 

 
If Yν is not normally distributed, the SPI must be computed according to Eq. (2), 

which can be rewritten by explicitly taking into account the parameters of the distribu-
tion, here indicated generically by a parameter vector Θ : 
  (22) 

In practice, the parameters Θ of the underlying distribution are unknown and there-
fore they will be estimated as . As a consequence, the estimated SPI will take the 
form:   
  (23) 

Although in principle, the sampling variability of the SPI can again be characterized 
by the deviation between the true SPI and the estimated one (see Eq. (8)), in practice 
derivation of the distribution of  is generally rather cumbersome, which hinders the 
possibility of an exact analytical approach.  

Nonetheless, it can be shown that Eq. (15) and Eqs. (20)-(21) are valid also for a 
large class of non-normal distributions, namely when data can be normalized by means 
of a monotonic transformation, e.g. Box-Cox (Box and Cox, 1964) among others.  

More specifically, let’s assume that there exist a monotonic function g(⋅) such that 
the transformed precipitation  is normally distributed with mean and 

standard deviation . It follows: 

  (24) 

and Eq. (22) yields for the true SPI:  

  (25) 

Estimation of the parameters ( , ) can be carried out by means of MLE, namely 
by computing the sample moments in the transformed domain, leading to: 

  (26)  

  (27) 

 
and the error of estimation of the SPI is: 
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  (28) 

Note how the previous equation resembles Eq. (8) since Y* is normally distributed 
by definition and  and are again sample mean and sample standard deviation of 
normal variables. Thus, the statistical properties of D are the same as in the previous 
case, and in particular Eqs.(15), (20) and (21) are still valid. It may be worthwhile to 
note that the same equations can still be considered valid, with good approximation, 
also in the case of gamma distributed precipitation, since it is well known that the 
gamma distribution is well approximated by the normal cube root distribution (Wilson 
and Hilferty, 1934), i.e. when Y*=Y1/3. 

In order to verify the previous findings, two sets of numerical experiments have 
been carried out by generating aggregated precipitation using the log normal and normal 
cube root distributions respectively. Then, for each distribution, after computation of 
corresponding SPI values,  the bias and RMSE of the resulting SPI have been estimated 
numerically, following a similar procedure already outlined for the normal case, consid-
ering different sample sizes n and parameters Θ. In particular, different parameter sets 
have been considered by fixing several coefficients of variation of the distribution, 
and deriving the corresponding parameters. 

In Figure 2 the bias computed by simulation for the two distributions are plotted 
versus the sample size for different . It can be inferred that, for practical purposes, 
they are negligible and therefore the estimation can be assumed unbiased. Furthermore, 
the spread of the bias around the zero value do not seem to depend on the different 

. 

 
Figure 2. Bias of estimation of SPI for the gamma distribution case (circles) and the lognormal distribu-

tion case (dots) 
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In Figure 3 the RMSE’s of estimation obtained by simulation are plotted versus the 
sample size for different . For the sake of comparison, the RMSE’s computed by 
means of Eq. (21) for the normal case are also plotted by continuous line. As expected, 
a comparison between the RMSE’s derived for the normal case and the numerical val-
ues obtained for the other two distributions reveals a very good fitting of the theoretical 
line to the numerical RMSE, which confirms the possibility to apply Eq. (21) also to 
non normal data which can be transformed into normal values. Also, RMSE computed 
from generated values do not depend on the coefficient of variation Cv, as was expected 
since Eq. (21) does not depend on the parameters of the underlying distribution.   

 
Figure 3. RMSE’s of estimation of SPI for the gamma distribution case (circles) and the lognormal dis-

tribution (dots) 
 
5. Sampling properties of SPI in the presence of trend 
 
The analytical expressions of Bias and RMSE of SPI previously derived can be ap-

plied to stationary normal precipitation series (section 3), as well as to stationary non 
normal series for which a normalizing transformation is feasible (section 4). 

Nonetheless, the question arises regarding how the sampling properties of SPI vary 
when a non stationary series of precipitation is adopted for its computation, for instance 
when precipitation is affected by trend.  

Although in principle, analytical expressions of the sampling properties can be de-
rived also in the case of a trend component in the underlying series, in the present paper 
only the preliminary results related to Monte Carlo experiments are reported.   

 In particular, as done previously, numerical simulations have been carried out to 
compute the bias and RMSE of the SPI, by generating this time precipitation series of 
different sample sizes n normal distributed and affected by a linear trend,.  

More specifically, the numerical experiment has been set up as follows:   
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• first, a series of n+1 values are sampled by generation from a normal distribution 
with mean zero and variance s2;  

• then, a linear trend is added to the sample series by considering different slopes b; 
• the “true” SPI corresponding to the value yn+1 in the sample is computed as: 

 

since the term b⋅(n+1) is the true mean, having assumed an arbitrary mean equal to 
zero at time t=0; 

• the estimated SPI corresponding to the value yn+1 is computed by using the sample 
mean and sample standard deviation based on the previous n values, that is:  

 

• the procedure is repeated by generating 5000 series;  
• the mean of the difference and of the squared difference between the estimated and 

the “true” SPI values are computed, yielding an estimate of the bias and MSE;  
• the whole procedure is then repeated for different n. 
 

In Figure 4 and Figure 5, the values of bias and RMSE obtained by simulation are 
plotted versus the sample size for different slopes. For the sake of generality, the slope 
values are expressed as ratio to the standard deviation s, namely b*=b/s. 

As it can be observed from Figure 4, the larger the sample size n, the more bias val-
ues diverge from zero, with positive bias for b*<0 and negative otherwise. Furthermore, 
for a fixed sample size, the difference from zero enlarges as the absolute value of b* in-
creases. This is expected due to the fact that as more past values are included in the es-
timation sample, the estimate of the mean and standard deviation will be affected by in-
creasing error due to the trend. 

However, as shown in Figure 5, the RMSE exhibit a rather different behaviour than 
bias, since, as sample size n increases the RMSE’s first decreases and then increases 
again. Therefore, a minimum value of RMSE can be determined for each considered 
slope b*≠0 corresponding to a given sample size. In particular, the latter reduces as the 
absolute values of b* increases, e.g. ranging from n=55 for b*=±0.5% to n=15 for b*= ±4 
%. 

 
6. Conclusions 

 
In the present paper the sampling variability of the SPI with respect to the size of the 

sample used for estimating the parameters of the probability distribution of aggregated 
precipitation has been investigated both in the case of stationary or non-stationary (e.g. 
affected by linear trend) series. In particular, sampling properties of the index, such as 
bias and RMSE, have been derived analytically for the case of stationary normally dis-
tributed precipitation.  
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Figure 4. Bias of estimation of SPI in the case of normal distributed precipitation series affected by a lin-

ear trend with different slope parameter b* 
 

 
Figure 5. RMSE’s of estimation of SPI in the case of normal distributed precipitation series affected by a 

linear trend with different slope parameter b* 
 

Moreover, it has been shown that the same expressions are applicable also for the 
case of a broad class of distributions, namely when data can be normalized by means of 
a monotonic transformation. The derived expressions reveal that SPI is unbiased, while, 
as expected, the RMSE tends asymptotically to zero as sample size increases. In this 
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case, it can be concluded that RMSE cannot be considered negligible for sample sizes in 
the order of 20-30 data.  

On the other hand, simulation experiments have revealed that when the estimation 
sample is affected by a linear trend, bias values diverge from zero as both sample size 
and trend slope increase, while RMSE first decreases until a minimum value is reached 
corresponding to a specific sample size and then increases again. Therefore, it appears 
that an optimal sample size (in RMSE sense) can be determined, when the underlying 
series is affected by trend. 
 Further researches are ongoing in order to derive analytical expressions of the sam-
pling properties of the SPI for non stationary series. 
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