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Abstract.  Groundwater models, often used to enhance understanding of hydrologic and chemical 

processes in local or regional aquifers, are often hindered by inadequate representation of the 

parameters which characterize these processes. Furthermore, attempts to estimate these parameters 

are usually limited to studies employing simplified aquifer representations. In this study we present 

preliminary results of using a data assimilation algorithm, the Ensemble Smoother, to provide 

enhanced estimates of aquifer hydraulic conductivity within a fully-coupled, surface-subsurface 

flow modeling framework through assimilation of water table elevation measurements. Based on 

the Kalman Filter methodology, the algorithm uses residuals between forecasted model results and 

assimilated measurement data, together with the covariance of model results, to correct model 

results throughout the model domain. Parameter estimation is achieved by incorporating spatially-

variable hydraulic conductivity values into the algorithm, thereby allowing the correlation between 

water table values and hydraulic conductivity to correct the hydraulic conductivity fields. The 

applicability of the Ensemble Smoother scheme is demonstrated via a synthetic three-dimensional 

catchment system incorporating variably-saturated subsurface flow, overland flow, and channel 

flow. Results indicate that assimilating water table measurements provides an improved estimate of 

the hydraulic conductivity fields.  

 

 

1. Introduction 
Deterministic, numerical hydrologic models, due to mathematical approximation of 

physical processes and an insufficient understanding of system parameters, are not capable 

of fully simulating the system they are designed to represent (Van Geer et al., 1991). As 

such, hydrologic model predictions are often fraught with uncertainty. In an attempt to (1) 

reduce uncertainty in both model response and parameter variables, and hence bring these 

variables into accordance with the actual system, and (2) quantify the uncertainty of the 

system, data assimilation (DA) techniques have been successfully used in hydrologic 

modeling (Liu and Gupta, 2007). Among the available DA schemes, the Kalman Filter 

(KF) (Kalman, 1960), designed for systems of linear dynamics, has been used extensively 

in physically-based modeling studies to assimilate real-world measurement data into model 

results to provide optimal estimates of system variables.  

Following a Bayesian framework, the KF is a statistical routine in which prior 

information (i.e., numerical model results and knowledge of the system parameters) is 

merged with information from the actual system (i.e., measurement data) to produce a 

corrected, posterior system estimate. Limitations of the KF scheme, namely the restriction 
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to linear dynamic systems and the requirement to represent model and measurement error 

statistics with fully-defined probability-density functions (PDF), has led to ensemble 

methods that use an ensemble of Monte Carlo model realizations to represent uncertainty. 

Using the results of the realizations, the ensemble mean and standard deviation of model 

variables at each location throughout the model domain are used to approximate the PDF 

of the model error statistics, and assimilated measurements are perturbed with a Gaussian 

error to approximate the PDF of the measurement error statistics. The Ensemble Kalman 

Filter (EnKF) (Evensen, 1994) was first used in meteorological and oceanographic 

modeling (Evensen and van Leeuwen, 1996; Houtekamer and Mitchell, 1998), and has 

since been applied to land-surface and groundwater modeling studies (e.g. Reichle et al., 

2002; Das and Mohanty, 2006; Camporese et al., 2009). Typical applications of these 

studies are the estimation of system response variables such as soil moisture, hydraulic 

head, and stream flow. Other studies have focused on using system response measurements 

to condition model parameters, such as hydraulic conductivity (Chen and Zhang, 2006; 

Hendricks Franssen and Kinzelbach, 2008). Chen and Zhang (2006) used 2D and 3D 

saturated groundwater flow simulations, and Hendricks Franssen and Kinzelbach (2008) 

used a 2D saturated groundwater flow simulation. 

The Ensemble Smoother (ES) (van Leeuwen and Evensen, 1996) is another ensemble 

scheme which has been used in hydrologic modeling studies (Dunne and Entakhabi, 2005), 

although to a much lesser extent than the EnKF. In contract to the basic filtering methods, 

which uses all available measurements to provide an updated model state estimate at only 

the current time, the smoother incorporates all previous measurements and model states to 

provide an updated model state at all previous times. This allows all previous model states 

to be updated each time measurements are collected and assimilated.  

In this study, the ability of the ES algorithm to accurately estimate system parameters 

using system response measurements is explored using a synthetic coupled surface-

subsurface flow simulation. Specifically, water table elevations are assimilated into model 

results to provide a corrected estimate of the water table field as well as condition the 

hydraulic conductivity field using measurements from one or more collection times.  

 

2. Theory of the Kalman Filter Data Assimilation Algorithm 
The basic KF algorithm follows the sequential forecast-update cycle, with update of 

the system occurring whenever measurements are available (Figure 1). In the forecast step, 

the model state X is run forward in time based on model formulation, parameters P, forcing 

terms q, boundary conditions b, model error w described by a Gaussian (PDF), and 

solution to the mathematical model Φ, generating the prior system information X
f
k+1, 

where the f superscript represents forecast: 
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(1) 

In the update step, measurement data yk+1 (represented by red circles in Figure 1) are 

collected from the actual system at time k+1, perturbed with a Gaussian error v to create 

the measurement vector Dk+1, and assimilated into the model forecast results to generate a 

posterior, corrected state estimate, X
u

k+1, to provide a state estimate that approaches the 

true state from which the measurements were collected: 
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(2) 
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Figure 1. DA framework showing the sequential update of the model state using measurements. 

Measurements are represented by red circles. The updated system state Xu is brought closer to 

the true state as more and more measurements are assimilated. 

 

The matrix H maps model results to model locations at which measurements are taken, 

so that the matrix HX
f
k+1 holds the model results at measurement locations. As such, the 

difference Dk+1 - HX
f
k+1 provides the residual (i.e. the error) between the model-predicted 

results and the measurements. The model-forecasted state X
f
k+1 is then corrected by this 

residual, which receives a weight via the Kalman Gain matrix, K, defined by: 

 
 

� � ����	����� �  ���� 
 

(3) 

 

where C
f
 is the error covariance matrix associated with the model forecast Xf

k+1
 and R is 

the measurement error covariance matrix associated with the perturbed measurements D. 

The formulation of K (1) allows spreading of measurement information throughout the 

model domain according to spatial correlation of model results, and (2) acts as a weighting 

term that scales correction terms according to model (C
f
) and measurement (R) error. If the 

model error is large and the measurement error is low, then the elements of K approach a 

value of 1 and the full residual is used to correct the forecast state, i.e. the measurement 

information is used in its entirety to correct the model results. In contrast, high 

measurement error relative to model error allows only a portion of the residual to correct 

the forecast state. 

In the ensemble schemes, the system state is represented by an ensemble of Monte 

Carlo simulations, each of which is forecasted with uncertain parameters according to 

Equation (1). When measurements are collected, they are perturbed and assimilated into 

the model results using Equation (2), with C
f
 assembled using the  deviation of each nodal 

value from the average nodal value at each model node (Evensen, 2007). 

 

3. Parameter Estimation Using the Ensemble Smoother 
To incorporate parameter estimation into the algorithm, the state matrix X is 

augmented to include uncertain model parameter values, e.g. hydraulic conductivity in 

groundwater flow modeling studies, allowing the spatial correlation between parameter 

and state variables to correct both the state and parameter values. In this study, water table 
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elevations (WTE) and hydraulic conductivity (K) values are updated using WTE 

measurements. In the ES format, X
f
k is comprised of both WTE and K variables, from time 

1 to k: 
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(4) 

 

where n is the number of model nodes, e is the number of parameters that characterize the 

system, and nmc is the number of Monte Carlo simulations. K values are only added once 

to the state matrix since they are assumed to be time-independent. WTE measurement data 

is used to assemble the matrix D, which olds all measurement data from time 1 to k: 
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(5) 

 

where m is the number of measurements collected at a given time. In a surface-subsurface 

modeling framework, an ensemble of random K fields are generated using a sequential 

Gaussian algorithm, with geostatistical parameters mean (µ), variance (σ
2
), and correlation 

length (λ). Boundary conditions, initial conditions, and forcing terms are also defined. An 

ensemble of simulations, with each realization using a different K field, is then run forward 

in time, representing the forecast step depicted by Equation (1). In the present proof-of-

concept study, an additional K field and associated flow simulation, from which 

measurements can be taken, provide a “true” state against which the updated fields can be 

compared. 

The update step consists of populating X with the ensemble of WTE and K values, 

taking measurements from the “true” state, and running the ES update routine to provide 

updated WTE and K ensembles. Measurement coefficient of variation is applied to 

measurements to incorporate measurement error. The performance of the routine is 

analyzed by comparing the updated model state to the “true” state via
 
the following two 

performance parameters (Hendricks Franssen and Kinzelbach, 2008): 
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(7) 

 

The absolute error term (AE) compares the model values to the “true” value at each 

location in the model domain, and the average ensemble standard deviation (AESD) 

compares the model values to the ensemble mean at each location, providing a measure of 

the spread of the values. Hence, AE determines if the updated state approaches the “true” 

state, and AESD determines the confidence in this estimate. 
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4. Model Forecast: Hydrologic Flow Simulations 
The model used to provide a forecast of the surface-subsurface flow scenario is the 

CATHY (CATchment HYdrology) model (Bixio et al., 2000; Camporese et al., 2009; 

Camporese et al., 2010), which couples three-dimensional variably saturated subsurface 

flow with one-dimensional diffusion wave overland and channel flow. Equations defining 

these processes can be found in Camporese et al. (2009). The model computational domain 

consists of (1) digital elevation model (DEM) cells for the ground surface, with which the 

one-dimensional surface flow equation is solved; and (2) a three-dimensional tetrahedral 

mesh for the underlying aquifer, which is created by triangulating the DEM cells and 

replicating them in the vertical direction downward to the prescribed aquifer base. The 

surface flow equation is solved using the Muskingum-Cunge diffusion wave 

approximation (Orlandini and Rosso, 1996), and the subsurface flow equation is solved 

using the finite element method (Paniconi and Putti, 1994). Unsaturated flow conditions 

are modeled using the van Gneuchten parameters for the water retention curve. 

The flow problem used in this study consists of a 4 km by 4 km v-shaped catchment 

that receives a monthly time series of precipitation and distributes it between overland 

flow, channel flow, and variably saturated groundwater flow over a one-year period, with 

channel flow occurring along the central depression. Aquifer thickness varies between 7.5 

and 15.5 m, discretized by 10 layers of varying thickness, with the thickest portion of the 

aquifer placed under the central depression. The aquifer was assigned a porosity of 0.35 

and a specific storage of 0.01 m
-1

. Eighty-one DEM cells were defined in both the x and y 

directions, resulting in 6561 surface cells, 6724 surface mesh nodes, 73964 total mesh 

nodes, and 393660  tetrahedral finite elements. Figure 2 shows results of a generic 

simulation with a homogeneous aquifer and a steady precipitation rate, run to steady 

groundwater and channel flow conditions, showing the aquifer base, the water table, the 

ground surface elevation, and the flowing channel.  

An ensemble of 85 log-normal hydraulic conductivity fields was generated using a 

sequential Gaussian algorithm, SKSIM (Baù and Mayer, 2008), with mean of -4.30 (log m 

sec
-1

), variance of 0.434 (log m sec
-1

)
2
, and correlation length of 1000 m. This resulted in 

K values ranging from 0.055 m day
-1

 to 216 m day
-1

. Using these K fields, an ensemble of 

85 CATHY simulations were run using the steady-state conditions presented in Figure 2. 

Each simulation was run for 181 days to eliminate the bias of the initial conditions, and 

then run for 365 additional days using a monthly recharge series, with the water table 

elevation at every location in the aquifer outputted at monthly simulation times. An 

additional K field and CATHY simulation was run to provide a “true” state against which 

ES-updated states could be compared. These “true” reference states, along with forecast 

results, will be presented in the next section. 

 

5. Model Update: Water Table and Hydraulic Conductivity Estimation 
In the first measurement scenario, 42 WTE measurements at simulation times of 59, 

120, 181, 243, 304, and 365 days were collected and assimilated into the model results to 

provide updated model states at these times. The WTE measurement data was assigned a 

coefficient of variation of 0.0, representing negligible measurement error. Figure 3 shows 

the “true” water table field at time = 365 days, with the red cross-marks depicting locations 

where measurements were collected (Figure 3A), the forecasted average value of the WTE 

at each location (ensemble mean) at time = 365 days (Figure 3B), and the updated 
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ensemble mean of the WTE (Figure 3C). The updated water table field closely resembles 

the “true” water table field, with the AE performance parameter reduced from 0.363 for the 

forecast state to 0.180 for the update state, a reduction of 50.4%. The standard deviation of 

the ensemble values at each model location is shown in Figure 3D. Notice that the standard 

deviation approaches 0.0 near the measurement locations, due to the measurements 

assigned a coefficient of variation of 0.0. 

 

 

 

 

 

 

Figure 2. Ground surface elevation, aquifer base, and steady-state water table and channel flow delineation, 

showing direction of groundwater flow in catchment and the rainfall series used in the transient 

simulation. The catchment is 4 km by 4 km. 
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Figure 3.  (A) “True” water table field at time = 365 days, with the red cross-marks depicting locations from 

which measurements are taken and assimilated; (B) Forecast ensemble mean at time = 365 days, 

(C) Update ensemble mean of water table elevation at every node in the model domain, at time = 

365 days, and (D) Standard deviation of the updated water table elevation at every node in the 

model domain, at time = 365 days. Notice that the standard deviation approaches 0.0 near the 

measurement locations. 

 

The K field ensemble was also included in the system state, allowing the K values to be 

conditioned by the WTE measurements. Figure 4 shows the “true” K field (Figure 4A), the 

forecasted ensemble mean of the K values at each model location (Figure 4B), and the 

updated ensemble mean of the K values (Figure 4C) when 42 WTE measurements are 

assimilated. The updated K ensemble seems to match quite reasonably the spatial K 

distribution of the “true” state. The AE was reduced from 0.660 for the forecast K 

ensemble to 0.473 for the updated K ensemble, a reduction of 28.3%.  Figure 4D shows the 

updated K ensemble mean when only 21 WTE measurements are assimilated. The overall 

trend of the K distribution approaches the “true” state in Figure 4A, although not to the 

same extent as when 42 WTE measurements are assimilated. With 21 WTE measurements 

assimilated, the AE value for the K ensemble is 0.500, a reduction of 24.2% from the 

forecast value of 0.660. 

A B 

C D 
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Figure 4. (A) “True” K field; (B) Forecasted K ensemble mean; (C) Updated K ensemble mean when 42 

WTE measurements are assimilated, and (D) Updated K ensemble mean when 21 WTE 

measurements are assimilated. 
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The standard deviation of the K ensemble values at each model location is shown in 

Figure 5, with the updated ensemble having an AESD value reduced by 54.4% from the 

forecasted value (0.231 compared to 0.507).  

 

    

Figure 5. Standard deviation of the (A) forecasted hydraulic conductivity ensemble and (B) updated 

hydraulic conductivity ensemble at every element in the model domain. The AESD value is 

decreased from 0.507 to 0.231. 

 

6. Conclusions 
The Ensemble Smoother (ES), a statistical data assimilation routine that merges 

uncertain, model-produced values with measurement data, was implemented and evaluated 

in its ability to condition hydraulic conductivity (K) fields using water table elevation 

(WTE) measurement data. Preliminary results demonstrate that, within the confines of a 

statistically homogeneous, randomly-generated K field ensemble, the ES scheme provides 

an updated K ensemble that approaches the state from which the WTE measurement data 

was collected. These results confirm results from earlier parameter estimation studies using 

the Ensemble Kalman Filter (EnKF), and extended its application to a more realistic 

framework by using the hydrologic model CATHY, a fully coupled surface-subsurface 

flow model. Further research will include an investigation into the influence of the number 

of WTE measurements, error assigned to assimilated WTE measurement data, the number 

of assimilation times, the correlation length used in generating the K fields, and using 

groundwater return flows to the stream as another system response variable to condition 

the K fields. 
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