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1 Introduction

Contaminants are often found in groundwater as a result of disposal or leakage of urban
sewage and industrial wastes, surficial applications of pesticides and fertilizers used in agri-
culture, atmospheric deposition or accidental releases of chemicals on the ground surface.
Contamination can originate from point sources or nonpoint sources. Typical contaminants
are organic compounds, trace metals, and radionuclides. Once contaminants enter the sub-
surface, they may reach shallow aquifers, where they dissolve in water, and are transported
downstream along flow pathways. Dissolved pollutants may thus contaminate withdrawal
sites at pumping wells, or reappear at the surface, thus posing serious risks for human health
or ecosystems in general.

Contaminants dissolved in groundwater typically experience complex physical and chem-
ical processes such as advection, diffusion, chemical reactions, sorption, biodegradation and
decay. Understanding and simulating these processes is crucial to predict the fate and trans-
port of solutes in groundwater. However, the study of contaminant transport is often hindered
by the limited ability to sufficiently characterize the inherent heterogeneities and anisotropies
in the subsurface, the reaction pathways of chemical processes and the time scales at which
they occur.

Mathematical models of groundwater flow and reactive transport may provide an effective
tool to study these processes when supported by consistent and reliable datasets. These
models rely on the fundamental equations of mass conservation for the aquifer/contaminant
system and describe the migration and the fate of contaminants in groundwater. Because
of their complexity, analytical solutions to these differential equations are available only for
highly simplified, ideal settings. Numerical approaches are thus necessary to realistically
represent real-world scenarios.

In this work, a two-dimensional finite-element simulation model is presented that solves
the contaminant transport equation for a solute undergoing advection, dispersion, first-order
decay, and non-linear local-equilibrium sorption. Sorption onto solid grains is one the most
important processes affecting the fate of contaminants dissolved in groundwater. In those
instances where sorption rates are much faster than the rates of advection and dispersion,
one may reasonably assume conditions of “local equilibrium”, in which the sorbed phase
achieves instantaneous equilibrium with the dissolved phase. The relationships that link
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sorbed concentrations to solute concentration are called “sorption isotherms” [3]. Sorption
is said to be non-linear when these isotherms are non-linear functions. Non-linear sorption
introduces a source of non linearity in the transport partial differential equation. Detailed
reviews of sorption models may be found in Brusseau and Rao [2], Weber Jr. et al. [15].

The contaminant transport model presented in this work extends the numerical model
“TRAN2D” of Gambolati et al. [6] to dealing with non-linear sorption isotherms. In this
numerical model, called “TRAN2D.NLS”, the non linearity is tackled using a direct iterative
approach based upon a Picard linearization. This method is implemented using several types
of sorption isotherms, which can be specified arbitrarily in however heterogeneous settings.

2 Mathematical Model for Transport Under Equilibrium Con-
ditions

The equation describing the transport in variably saturated porous media of contaminants
undergoing first-order radioactive (or biodegradation) decay and local equilibrium sorption
may be written as [1, 11, 5, 6]:

∂

∂xi

(
Dij · ∂c

∂xj

)
− ∂

∂xi
(vi · c) − n · Sw · λc − ρb · λ · S =

=
∂(n · Sw · c)

∂t
+ ρb · ∂S

∂t
− q · c∗ − f (1)

where: xi is the ith Cartesian coordinate (i = 1, 2); t is time [T]; n is the porosity of the
medium [/]; Sw is the water saturation [/]; vi is the Darcy velocity [L/T]; Dij is the disper-
sion tensor [L2/T]; c is the concentration of the dissolved constituent [M/L3]; q represents
distributed source or sink terms (volumetric flow rate per unit volume) [T−1]; c∗ is the con-
centration of the solute injected or withdrawn with the fluid source or sink [M/L3]; λ is the
rate constant of decay [1/T]; S is the concentration of the adsorbed constituent in the solid
phase [M/M]; ρb = (1− n) · ρs is the bulk density [M/L3]; ρs is the solid density [M/L3]; and
f is the distributed mass rate of the solute per unit volume [M/L3T].

In Equation (1), the dispersion tensor is given by [1]:

Dij = n · Sw · D̃ij = (αT · | v | +n · Sw · D0 · τ) · δij + (αL − αT ) · vi · vj

| v | (2)

where: i, j = 1, 2; | v |=
√

v2
1 + v2

2; αL is the longitudinal dispersivity [L]; αT is the transversal
dispersivity [L]; δij is the Kronecker delta [/]; Do is the molecular diffusion coefficient [L2/T];
τ is the tortuosity [/].

Equation (1) may be expanded by applying the “chain rule” to the advective term:

∂

∂xi

(
Dij · ∂c

∂xj

)
− vi · ∂c

∂xi
− c · ∂vi

∂xi
− n · Sw · λc − ρb · λ · S =

=
∂(n · Sw · c)

∂t
+ ρb · ∂S

∂t
− qc∗ − f (3)

From Richards’ Equation [13], which governs flow in variably saturated porous media:

∂vi

∂xi
= q − ∂(n · Sw)

∂t
(4)
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After substitution of Equation (4) into Equation (3), the latter becomes:

∂

∂xi

(
Dij · ∂c

∂xj

)
− vi · ∂c

∂xi
= n · Sw ·

(
∂c

∂t
+ λ · c

)
+

+ ρb ·
(

∂S

∂t
+ λ · S

)
+ q · (c − c∗) − f (5)

It is worth to observe that if q denotes a sink term then c = c∗ and the term q(c−c∗) vanishes.
The initial and boundary conditions for the transport Equation (5) can be expressed

as [4]:

c(xi, 0) = co(xi) (6a)
c(xi, t) = c(xi, t) on ΓD (6b)

Dij · ∂c

∂xj
· ni = qN

c (xi, t) on ΓN (6c)(
Dij · ∂c

∂xj
− vi · c

)
· ni = qC

c (xi, t) on ΓC (6d)

where: co is the initial concentration; c is the prescribed concentration on the Dirichlet
boundary ΓD; qN

c is the prescribed dispersive flux normal to the Neumann boundary ΓN

(positive outwards); and qC
c is the prescribed total flux of solute across the Cauchy or Rubin

boundary ΓC .

3 Sorption isotherms

Sorption is typically estimated experimentally by measuring the solute concentration sorbed
on a particular sediment, soil, or rock type. It is observed that the sorption capacity is
generally a function of the solute concentration in the aqueous phase [2, 15]. Such a function
is called “sorption isotherm”. If sorption is much faster than the fluid velocity, then the
solute may be considered locally in a condition of constant equilibrium with the sorbed
phase. Equilibrium sorption isotherms are known to depend on several factors, such as surface
charge of the sorbing phase, ionic strength, solution pH, competing counter-ions and their
concentrations, and the concentration of the sorbed phase. In some cases the “adsorption”
isotherm may be different from the “desorption” isotherm (chemical hysteresis) [3].

In the numerical approach presented here, the equilibrium sorption isotherm is expressed
as a generic function:

S = S (c) (7)

Examples of sorption models that may be dealt with are the Freundlich isotherm and the
Langmuir isotherm [3]. The Freundlich sorption isotherm is defined by:

S = S (c) = KF · cN (8)

where: KF is referred to as the distribution coefficient [(L3/M)N ], and N is a constant.
Examples of Freundlich isotherms are shown in Figure 1. If N is equal to 1, a linear

sorption isotherm is obtained. Since with Freundlich isotherms no upper bound to the sorbed
concentration may be accounted for, their use should be restricted within the concentration
limits of experimental data.

3



D. Baú FE Solution to Groundwater Transport

Figure 1: Sorption isotherm models implemented in TRAN2D.NLS.

The Langmuir isotherm was developed to limit the sorbed concentration to the maximum
amount of solute that can be sorbed onto the solid phase. This isotherm can be expressed
as:

S = S (c) =
Slim · KL · c
Slim + KL · c (9)

where: KL is an adsorption constant, which depends on the binding energy [L3/M]; Slim is
the sorption capacity [M/M].

Figure 1 shows examples of the sorption isotherms that may be prescribed in TRAN2D.NLS.
The model also allows for generalizing the sorption isotherm by including a piecewise linear
function (see Figure 1), which may be fitted to any set of experimental data.

4 Finite-Element Solution

The substitution of Equation (7) into Equation (5) gives:

∂

∂xi

(
Dij · ∂c

∂xj

)
− vi · ∂c

∂xi
= n · Sw ·

(
∂c

∂t
+ λ · c

)
+

+ρb ·
[
dS

dc
· ∂c

∂t
+ λ · S (c)

]
+ q · (c − c∗) − f (10)

Equation (10) is non-linear since S depends upon c through Equation (7). The finite-element
integration of the transport Equation (10) relies upon an approximate solution given in the
form of a linear combination of Nn linear basis functions Ng(x1, x2) for two-dimensional
triangular finite elements:

c ≈ ĉ =
Nn∑
g=1

Ng(x1, x2) · cg(t) (11)
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where cg(t) is the unknown concentration at the generic node of the finite-element mesh, and
Nn is the number of nodes in the mesh. The spatial and temporal partial derivatives of ĉ are:

∂ĉ

∂xi
=

Nn∑
g=1

∂Ng(x1, x2)
∂xi

· cg(t) ; i = 1, 2 (12)

∂ĉ

∂t
=

Nn∑
g=1

Ng(x1, x2) · ∂cg(t)
∂t

(13)

Substituting Equation (11) in Equation (10) yields the residual:

M(ĉ) =
∂

∂xi

(
Dij

∂ĉ

∂xj

)
− vi · ∂ĉ

∂xi
− n · Sw ·

(
∂ĉ

∂t
+ λ · ĉ

)
+

− ρb ·
[
dS

dĉ
· ∂ĉ

∂t
+ λ · S (ĉ)

]
− q · (ĉ − c∗) + f (14)

The finite-element solution relies on the minimization of the residual (14), which is achieved
by imposing its orthogonality over the domain R with Nn test functions Wg(x1, x2). This
constraint produces the weighted residual equations:∫

R
M(ĉ) · Wg(x1, x2) · dR = 0 g = 1, . . . , Nn (15)

Depending on the choice of the test functions Wg, different methods are formulated. For
example, the classical Galerkin method assumes Wg ≡ Ng. In the approach followed in
TRAN2D, an “upwind” Petrov-Galerkin method is implemented, where nonsymmetric test
functions are used to integrate the advective component of the transport equation, whereas
linear basis functions are used otherwise. This approach helps reduce numerical dispersion
in advection-dominated problems [10, 14].

Since integration by parts of both the dispersive and advective components of integral (15)
is known to yield unstable numerical solutions [7, 8, 9, 4] this is applied to the dispersive
component only:

(a): −
∫

R

(
Dij · ∂ĉ

∂xj
· ∂Wg

∂xi
+ vi · ∂ĉ

∂xi
· Wg

)
· dR +

(b): +
∫

Γ

(
Dij · ∂ĉ

∂xj

)
ni · Wg · dΓ +

(c): −
∫

R
n · Sw ·

(
∂ĉ

∂t
+ λĉ

)
· Wg · dR +

(d): −
∫

R
ρb ·

[
dS

dĉ
· ∂ĉ

∂t
+ λ · S (ĉ)

]
· Wg · dR +

(e): +
∫

R
[(c∗ − ĉ) · q − f ] · Wg · dR = 0 g = 1, . . . , Nn (16)

The terms (a)-(e) in the generic Equation (16) may be expanded by substituting (11) and
its partial derivatives (12) and (13), and partitioning each integral over the Ne elements of
the grid. The term (b) in Equation (16) is expanded by imposing the Neumann and Cauchy
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boundary conditions (6c) and (6d). These calculations are explained in the following.

(a): = −
Ne∑
e=1

∫
Δe

{De
ij ·

⎡
⎣ Nn∑

g′=1

cg′(t) ·
∂N e

g′

∂xj

⎤
⎦ · ∂W e

g

∂xi
+

+ve
i ·

⎡
⎣ Nn∑

g′=1

cg′(t) ·
∂N e

g′

∂xj

⎤
⎦ · W e

g } · dRe =

= −
Nn∑

g′=1

[
Ne∑
e=1

∫
Δe

De
ij ·

∂N e
g′

∂xj
· ∂W e

g

∂xi
· dΔe

]
· cg′(t) +

−
Nn∑

g′=1

[
Ne∑
e=1

∫
Δe

ve
i ·

∂N e
g′

∂xj
· W e

g · dΔe

]
· cg′(t) =

= −
Nn∑

g′=1

Ag,g′ · cg′(t) −
Nn∑

g′=1

Bg,g′ · cg′(t) (17)

(b): =
∫

ΓN

qN
c (xi, t) · Wg · dΓN +

+
∫

ΓC

[
vi · c · ni + qC

c (xi, t)
] · Wg · dΓC =

=
Ne∑
e=1

∫
Γe

N

qNe
c (xi, t) · W e

g · dΓe
N +

+
Nn∑

g′=1

[
Ne∑
e=1

∫
Γe

C

ve
i · ne

i · N e
g′ · W e

g · dΓe
C

]
· cg′(t)

+
Ne∑
e=1

∫
Γe

C

qCe
c · W e

g dΓe
C == rN

g +
Nn∑

g′=1

fC
g,g′ · cg′(t) + rC

g (18)

(c): = −
∫

R
n · Sw ·

⎡
⎣ Nn∑

g′=1

Ng′ ·
∂cg′

∂t
+ λ · cg′(t)

⎤
⎦ · Wg · dR =

= −
Nn∑

g′=1

[
Ne∑
e=1

∫
Δe

ne · Se
wN e

g′ · W e
g · dΔe

]
· ∂cg′

∂t
+

−
Nn∑

g′=1

[
Ne∑
e=1

∫
Δe

ne · Se
w · λe · N e

g′ · W e
g · dΔe

]
· cg′(t) =

= −
Nn∑

g′=1

G
(1)
g,g′ ·

∂cg′

∂t
−

Nn∑
g′=1

Eg,g′ · cg′(t) (19)

6
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(d): = −
∫

R
ρb ·

⎡
⎣dS

dĉ
·

Nn∑
g′=1

Ng′ ·
∂cg′

∂t
+ λ · S(ĉ)

⎤
⎦ · Wg · dR =

= −
Ne∑
e=1

∫
Δe

ρe
b ·

⎡
⎣dSe

dĉ
·

Nn∑
g′=1

N e
g′ ·

∂cg′

∂t
+ λe · Se(ĉ)

⎤
⎦ · W e

g · dΔe =

= −
Nn∑

g′=1

[
Ne∑
e=1

∫
Δe

ρe
b ·

dSe

dĉ
· N e

g′ · W e
g · dΔe

]
· ∂cg′

∂t
+

−
Ne∑
e=1

∫
Δe

ρe
b · λe · Se(ĉ) · W e

g · dΔe =

= −
Nn∑

g′=1

G
(2)
g,g′(ĉ) ·

∂cg′

∂t
− dg(ĉ) (20)

(e): = −
∫

R

⎡
⎣

⎛
⎝ Nn∑

g′=1

Ng′ · c′g(t) − c∗

⎞
⎠ · q − f

⎤
⎦ · Wg · dR =

= −
Ne∑
e=1

∫
Δe

⎡
⎣
⎛
⎝ Nn∑

g′=1

N e
g′ · c′g(t) − c∗

⎞
⎠ · qe − f e

⎤
⎦ · W e

g · dΔe =

= −
Nn∑

g′=1

[
Ne∑
e=1

∫
Δe

N e
g′ · W e

g · qe · dΔe

]
· c′g(t) +

+
Ne∑
e=1

∫
Δe

(qe · c∗ + f e) · W e
g · dΔe =

= −
Nn∑

g′=1

fF
g,g′ · cg′(t) + rF

g (21)

Substituting Equations (17)-(21) into Equation (16) gives:

Nn∑
g′=1

[
Ag,g′ + Bg,g′ − fC

g,g′ + Eg,g′ + fF
g,g′

] · cg′(t) +

+
Nn∑

g′=1

[
G

(1)
g,g′ + G

(2)
g,g′(ĉ)

]
· ∂cg′

∂t
− rN

g − rC
g + dg(ĉ) − rF

g = 0 (22)

g = 1, . . . , Nn

where:

Ag,g′ =
Ne∑
e=1

∫
Δe

De
ij ·

∂N e
g′

∂xj
· ∂W e

g

∂xi
· dΔe

Bg,g′ =
Ne∑
e=1

∫
Δe

ve
i ·

∂N e
g′

∂xi
· W e

g · dΔe

7
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Eg,g′ =
Ne∑
e=1

∫
Δe

ne · Se
w · λe · N e

g′ · W e
g · dΔe

Fg,g′ = fF
g,g′ − fC

g,g′ =
Ne∑
e=1

∫
Δe

qe · N e
g′ · W e

g · dΔe +

−
Ne∑
e=1

∫
Γe

C

(ve
i · ne

i ) · N e
g′ · W e

g · dΓe
C

Gg,g′(ĉ) = G
(1)
g,g′ + G

(2)
g,g′(ĉ) =

Ne∑
e=1

∫
Δe

ne · Se
w · N e

g′ · W e
g · dΔe +

+
Ne∑
e=1

∫
Δe

ρe
b ·

dSe

dĉ
· N e

g′ · W e
g · dΔe (23)

Rg(ĉ) = −rF
g − rN

g − rC
g + dg(ĉ) = −

Ne∑
e=1

∫
Δe

(qec∗
e
+ f e) · W e

g · dΔe +

−
Ne∑
e=1

∫
Γe

N

qNe

c · W e
g · dΓe

N −
Ne∑
e=1

∫
Γe

C

qCe

c · W e
g · dΓe

C +

+
Ne∑
e=1

∫
Δe

ρe
b · λe · Se(ĉ) · W e

g · dΔe (24)

It is worth noting that the generic Equation (22) is non-linear as the two terms (23) and (24),
which include the sorption isotherm and its derivative, are concentration-dependent. Equa-
tions (22) represent a system of Nn non-linear equations for the unknown nodal concentrations
c = (c1, c2, . . . , cNn)T :

[A + B + E + F ] · c + G(c) · ∂c

∂t
+ R(c) = 0 (25)

Integration in time of Equation (25) is performed using a weighted finite-difference scheme:

c = ν · c(k+1) + (1 − ν) · c(k) (26)
∂c

∂t
=

c(k+1) − c(k)

t(k+1) − t(k)
=

c(k+1) − c(k)

Δtk
(27)

After introducing Equations (26) and (27) into (25), the following finite-difference scheme is
obtained:

{ν · [A + B + E + F ](k+ν) +
1

Δtk
· G(c)(k+ν)} · c(k+1) =

= { 1
Δtk

· G(c)(k+ν) − (1 − ν) · [A + B + E + F ](k+ν)} · ck − R(c)(k+ν)

(28)

Scheme (28) is sensitive to the value of the weighting parameter ν: ν values close to 1/2 lead
to accurate but unstable solutions, while ν values close to 1 yield good stability but large
numerical dispersion [12].

8
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To address the non linearity of the system (28), a Picard iteration procedure is here
proposed:

{ν · [A + B + E + F ](k+ν) +
1

Δtk
· G

[
cm

(k+ν)

]
} · cm+1

(k+1) =

= { 1
Δtk

G(cm
(k+ν)) − (1 − ν) · [A + B + E + F ](k+ν)} · c(k) − R

[
cm
(k+ν)

]
(29)

where m is the Picard iteration index. At each time step, the linear set of equations (29)
is solved repeatedly until the concentration vector cm+1

(k+1) reaches convergence. cm+1
(k+1) is

then used as initial guess for the concentration distribution at the following time step.
In scheme (29), the evaluation of the matrices that do not depend on concentration (that
is, A, B, E, and F ) is performed using the values of velocity and water saturation at time
level k + ν calculated by solving the Richard’s equation. The concentration dependent terms
(that is, G and R) are updated at each iteration m based upon a weighted average concentra-
tion calculated as in Equation (26). At each iteration, Dirichlet boundary conditions (6a) are
imposed after the discretized system has been assembled. This is carried out by modifying
the rows of the system (29) corresponding to the Dirichlet nodes: (i) extra-diagonal coeffi-
cients are set equal to zero; (ii) the diagonal coefficient is set equal to one; (iii) the known
term is set equal to the Dirichlet boundary solute concentration.

5 Solute Mass balance

At the end of each time step, the accuracy of the finite-element solution may be assessed by
calculating the terms of the solute mass balance equation, and checking whether the difference
between inflows and outflows is equal the variation in the mass of solute stored in the system.
The mass balance relies upon the integration of Equation (5) over the domain R. In the
finite-element formulation presented here, the mass balance equation for the current time
step Δtk may be written as:

MD(k+1) + MN(k+1) + MC(k+1) + MF (k+1) = ΔM(k+1) (30)

where: MD(k+1), MN(k+1), and MC(k+1) are the net solute masses exchanged through the
Dirichlet, Neumann, and Cauchy boundaries, respectively; MF (k+1) is the net solute mass
entering the system associated with the source term (q · c∗ + f) (Equation (1)); and ΔM(k+1)

is the change in the solute mass stored in the domain. The masses MD(k+1), MN(k+1),
and MC(k+1) may be calculated as:

MD(k+1) = {
∫

ΓD

qD
c(k+ν) · dΓD} · Δtk

MN(k+1) = {
∫

ΓN

qN
c(k+ν) · dΓN} · Δtk

MC(k+1) = {
∫

ΓC

qC
c(k+ν) · dΓC} · Δtk

MF (k+1) = {
∫

R
(q · c∗ + f)(k+ν) · dR} · Δtk

where the subscript (k + ν) represent the weighted average calculated in a fashion analogous
to Equation (26).

9
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After the iterative scheme (29) has converged, the solute mass rates exchanged through
the nodes of the Dirichlet, Neumann, and Cauchy boundaries may be obtained from the
matrix-vector product at the right-hand side of Equation (29) calculated using the matrix
coefficients prior to imposing the Dirichlet boundary conditions. In practice, these mass
rates allow for the calculation of MD(k+1), MN(k+1), MC(k+1) and MF (k+1). The change in
the solute mass stored in the domain during the time step Δtk may be estimated as:

ΔM(k+1) =
Ne∑
e=1

∫
Δe

{ne · Se
w

[
ĉ(k+1) − ĉ(k) + λe · ĉ(k+ν)

]
+

+ ρe
b ·

[
Se(ĉ(k+1)) − Se(ĉ(k)) + λe · Se(ĉ(k+ν))

]} · dΔe (31)

The absolute mass balance error is thus given by:

εa =| MD(k+1) + MN(k+1) + MC(k+1) + MF (k+1) − ΔM(k+1) | (32)

The relative mass balance error may be calculated as:

εr =
2 · εa

| MD(k+1) + MN(k+1) + MC(k+1) + MF (k+1) + ΔM(k+1) |
(33)

6 Test Simulations

Analytical solutions for a tracer in a semi-infinite one-dimensional (1-D) homogeneous domain
undergoing radioactive decay and linear equilibrium sorption may be found in [1]. In this
domain, flow is assumed to be at steady-state and uniform. The initial condition is c(x, 0) = 0,
whereas boundary conditions are c(0, t) = c0 and c (x → ∞, t) = 0. These solutions are here
used to test the accuracy of the simulation results obtained with TRAN2D.NLS. In this set
of simulations, use is made of the hydrogeological parameters presented in Table 1.

Table 1: Test Case: hydrogeological parameters
Porosity n (/) 0.3
Water Saturation Sw (/) 1.0
Solid Density ρs (kg/m3) 2650
Darcy Velocity v (m/s) 1.0×10−7

Boundary Concentration c0 (kg/m3) 1.0
Molecular Diffusivity Do (m2/s) 6.6×10−6

Tortuosity τ (/) 0.4
Longitudinal Dispersivity αL (m) 10.0
Decay Rate Constant λ (s−1) 4.40×10−9

Distribution Coefficient KF (m3/kg) 1.66×10−3

Adsorption Constant KL (m3/kg) 1.66×10−3

Sorption Capacity Slim (kg/kg) 1.66×10−4

To represent the semi-infinite 1-D column, a 2×200 (m×m) rectangular domain is dis-
cretized with the finite-element mesh shown in Figure 2. At the left and right boundaries
of the domain, the two Dirichlet conditions c(0, t) = c0 and c(200 m,t) = 0 are imposed,
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respectively. The upper and lower longitudinal edges are considered Neumann boundaries,
where the dispersive flux qN

c is set to zero. The longitudinal size of the grid is large enough
to ensure that the breaktrough profiles at the time of interest are not affected by the down-
stream boundary condition. The resolution of this grid is chosen in order to prevent effects of
numerical dispersio, which are expected to occur when the element size is of the same order
of the longitudinal dispersivity. In the simulation tests, a time step Δt= 1 day is adopted.

Figure 3 shows the solute concentration profiles obtained at time t=1825 days in the
case of a conservative solute (λ=0; KF =0) using both the analytical solution (see Equation
(7-134) in Bear [1]) and the numerical model TRAN2D.NLS. The numerical results closely
match the analytical model.

Figure 4 shows the analytical and the numerical solute concentration profiles obtained
at time t=1825 days in the case of a solute undergoing decay(λ=4.40×10−9s−1; KF =0).The
analytical breakthrough curve (see Equation (7-133) in Bear [1]) is accurately reproduced by
the numerical model.

Figure 5 displays the solute concentration distributions at time t=1825 days in the case of
a solute undergoing linear sorption (λ=0; KF =1.66×10−3 m3/kg; N=1) obtained using the
analytical solution (see Equation (7-135) in Bear [1]) and the numerical model TRAN2D.NLS.
Even in this case, the numerical results coincide with the analytical solution.

Figure 6 shows the solute concentration profiles at time t=1825 days obtained assuming
a non-linear Freundlich isotherm with N values equal to 0.8 and 1.25, and a linear soprtion
isotherm (N=1). In each case the same value of the distribution coefficient KF is considered.
Note that, because of the non-linear nature of the isotherms, no analytical solution is available,
therefore the numerical approach implemented in TRAN2D.NLS is necessary to simulate the
behavior of the contaminant front. It may be observed that if N is greater than 1 the
breakthrough curve is spreading, while it is self-sharpening if N is less than 1. A similar
observation is made by Fetter [3].

Figure 7 compare the breakthrough profiles at time t=1825 days obtained assuming, in
one case, a linear sorption isotherm with KF =1.66×10−3 m3/kg, and, in another a non-linear
Langmuir isotherm with KL=1.66×10−3 m3/kg and Slim=1.66×10−4 (kg/kg). It is evident
that, because of the limited sorption capacity that may be accounted for, with the Langmuir
model the solute concentration results significantly higher than that predicted using the linear
isotherm.

Figures 8 shows the convergence profiles for the Picard iteration implemented in TRAN2D.NLS,
obtained at the 20th time step using different values of the non-linear sorption isotherm pa-
rameters. These profiles represent the maximum change in the concentration distribution
that is calculated at each iteration in the Picard scheme (Equation (29)) plotted against the
iteration index m.

Figure 8a refers to Freundlich isotherms with KF =1.66×10−3 m3/kg and increasing values

Figure 2: Detail of the finite-element mesh, characterized by 603 nodes and 800 triangular
elements.
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Figure 3: Comparison between the numerical and analytical solutions obtained assuming the
solute as conservative (λ=0; KF =0).

Figure 4: Comparison between the numerical and analytical solutions obtained assuming the
solute as decaying with λ=4.40×10−9s−1.

12
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Figure 5: Comparison between the numerical and analytical solutions obtained assuming the
solute undergoes linear sorption (KF =1.66×10−3 m3/kg; N=1).

Figure 6: Comparison between the numerical solutions obtained assuming Freundlich non-
linear sorption isotherms with different N values (λ=0 ; KF =1.66×10−3 m3/kg).
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Figure 7: Comparison between the numerical solutions obtained assuming in one case a Fre-
undlich linear isotherm (KF =1.66×10−3 m3/kg; N=1) and a rate-limited Langmuir isotherm
(KL=1.66×10−3 m3/kg); Slim=1.66×10−4 (kg/kg) in another.

of N . It is observed that the convergence rate is approximately log-linear, and is lower for
either small or large values of the coefficient N . On the other hand, if N approaches 1, the
isotherm tends to be linear and convergence is faster. If N=1, convergence is achieved with
one single iteration (m=1).

Figure 8b refers to Langmuir isotherms with KL=1.66×10−3 m3/kg and values of Slim

increasing from 1×10−4 to 1.66×10−3 kg/m3. Even in this case, the convergence rate is
approximately log-linear, and is lower for low values of Slim. In practice, the Langmuir
isotherm may be modeled as a simple linear isotherm if the sorption capacity is significantly
larger than the product between KL and the concentration of the contaminant source.

7 Conclusions

Finite element models can be effectively used to study the migration and fate of contami-
nants dissolved in groundwater in realistically heterogeneous scenarios. These models rely
on the solution by variational methods to the partial differential equations that express the
mass continuity for the aquifer/contaminant system. In this work, a two-dimensional finite-
element model has been developed to simulate groundwater transport of a solute undergoing
advection, dispersion, first-order decay, and non-linear local-equilibrium sorption. The model
applies to real-world applications in which sorption rates are much faster than the rates of
advection and dispersion. The model can deal with common non-linear sorption models,
such as Freundlich’s or Langmuir’s, as well as arbitrary isotherms specified using piecewise
linear functions. To tackle the non linearity introduced in the transport equation by non
linear isotherms, a direct iterative approach was devised based upon a straighforward Picard
linearization. The transport model was benchmarked against analytical solutions available
in the literature for highly idealized one-dimensional settings. The model was then used in
a number of preliminary tests, where no analytical solutions are available, which were de-
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(a) (b)

Figure 8: Convergence profiles obtained using increasing values of the (a) Freundlich and (b)
Langmuir sorption isotherm parameters.

veloped to: (a) study the sorption effects as simulated using different non-linear isotherm
models; (b) verify the computational efficiency of the devised Picard iterative scheme.
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